32 - Understanding Agency with Jan Kulveit
AXRP - the AI X-risk Research Podcast
Release Date: 05/30/2024
AXRP - the AI X-risk Research Podcast
Typically this podcast talks about how to avert destruction from AI. But what would it take to ensure AI promotes human flourishing as well as it can? Is alignment to individuals enough, and if not, where do we go form here? In this episode, I talk with Joel Lehman about these questions. Patreon: Ko-fi: Transcript: FAR.AI: FAR.AI on X (aka Twitter): FAR.AI on YouTube: The Alignment Workshop: Topics we discuss, and timestamps: 01:12 - Why aligned AI might not be enough 04:05 - Positive visions of AI 08:27 - Improving recommendation systems Links: Why Greatness Cannot...
info_outlineAXRP - the AI X-risk Research Podcast
Suppose we're worried about AIs engaging in long-term plans that they don't tell us about. If we were to peek inside their brains, what should we look for to check whether this was happening? In this episode Adrià Garriga-Alonso talks about his work trying to answer this question. Patreon: Ko-fi: Transcript: FAR.AI: FAR.AI on X (aka Twitter): FAR.AI on YouTube: The Alignment Workshop: Topics we discuss, and timestamps: 01:04 - The Alignment Workshop 02:49 - How to detect scheming AIs 05:29 - Sokoban-solving networks taking time to think 12:18 - Model organisms of long-term...
info_outlineAXRP - the AI X-risk Research Podcast
AI researchers often complain about the poor coverage of their work in the news media. But why is this happening, and how can it be fixed? In this episode, I speak with Shakeel Hashim about the resource constraints facing AI journalism, the disconnect between journalists' and AI researchers' views on transformative AI, and efforts to improve the state of AI journalism, such as Tarbell and Shakeel's newsletter, Transformer. Patreon: Ko-fi: The transcript: FAR.AI: FAR.AI on X (aka Twitter): FAR.AI on YouTube: The Alignment Workshop: Topics we discuss, and timestamps: 01:31 -...
info_outlineAXRP - the AI X-risk Research Podcast
Lots of people in the AI safety space worry about models being able to make deliberate, multi-step plans. But can we already see this in existing neural nets? In this episode, I talk with Erik Jenner about his work looking at internal look-ahead within chess-playing neural networks. Patreon: Ko-fi: The transcript: FAR.AI: FAR.AI on X (aka Twitter): FAR.AI on YouTube: The Alignment Workshop: Topics we discuss, and timestamps: 00:57 - How chess neural nets look into the future 04:29 - The dataset and basic methodology 05:23 - Testing for branching futures? 07:57 - Which...
info_outlineAXRP - the AI X-risk Research Podcast
The 'model organisms of misalignment' line of research creates AI models that exhibit various types of misalignment, and studies them to try to understand how the misalignment occurs and whether it can be somehow removed. In this episode, Evan Hubinger talks about two papers he's worked on at Anthropic under this agenda: "Sleeper Agents" and "Sycophancy to Subterfuge". Patreon: Ko-fi: The transcript: Topics we discuss, and timestamps: 0:00:36 - Model organisms and stress-testing 0:07:38 - Sleeper Agents 0:22:32 - Do 'sleeper agents' properly model deceptive alignment? 0:38:32 -...
info_outlineAXRP - the AI X-risk Research Podcast
You may have heard of singular learning theory, and its "local learning coefficient", or LLC - but have you heard of the refined LLC? In this episode, I chat with Jesse Hoogland about his work on SLT, and using the refined LLC to find a new circuit in language models. Patreon: Ko-fi: The transcript: FAR.AI: FAR.AI on X (aka Twitter): FAR.AI on YouTube: The Alignment Workshop: Topics we discuss, and timestamps: 00:34 - About Jesse 01:49 - The Alignment Workshop 02:31 - About Timaeus 05:25 - SLT that isn't developmental interpretability 10:41 - The refined local...
info_outlineAXRP - the AI X-risk Research Podcast
Road lines, street lights, and licence plates are examples of infrastructure used to ensure that roads operate smoothly. In this episode, Alan Chan talks about using similar interventions to help avoid bad outcomes from the deployment of AI agents. Patreon: Ko-fi: The transcript: FAR.AI: FAR.AI on X (aka Twitter): FAR.AI on YouTube: The Alignment Workshop: Topics we discuss, and timestamps: 01:02 - How the Alignment Workshop is 01:32 - Agent infrastructure 04:57 - Why agent infrastructure 07:54 - A trichotomy of agent infrastructure 13:59 - Agent IDs 18:17 - Agent channels...
info_outlineAXRP - the AI X-risk Research Podcast
Do language models understand the causal structure of the world, or do they merely note correlations? And what happens when you build a big AI society out of them? In this brief episode, recorded at the Bay Area Alignment Workshop, I chat with Zhijing Jin about her research on these questions. Patreon: Ko-fi: The transcript: FAR.AI: FAR.AI on X (aka Twitter): FAR.AI on YouTube: The Alignment Workshop: Topics we discuss, and timestamps: 00:35 - How the Alignment Workshop is 00:47 - How Zhijing got interested in causality and natural language processing 03:14 - Causality and...
info_outlineAXRP - the AI X-risk Research Podcast
Epoch AI is the premier organization that tracks the trajectory of AI - how much compute is used, the role of algorithmic improvements, the growth in data used, and when the above trends might hit an end. In this episode, I speak with the director of Epoch AI, Jaime Sevilla, about how compute, data, and algorithmic improvements are impacting AI, and whether continuing to scale can get us AGI. Patreon: Ko-fi: The transcript: Topics we discuss, and timestamps: 0:00:38 - The pace of AI progress 0:07:49 - How Epoch AI tracks AI compute 0:11:44 - Why does AI compute grow so smoothly?...
info_outlineAXRP - the AI X-risk Research Podcast
Sometimes, people talk about transformers as having "world models" as a result of being trained to predict text data on the internet. But what does this even mean? In this episode, I talk with Adam Shai and Paul Riechers about their work applying computational mechanics, a sub-field of physics studying how to predict random processes, to neural networks. Patreon: Ko-fi: The transcript: Topics we discuss, and timestamps: 0:00:42 - What computational mechanics is 0:29:49 - Computational mechanics vs other approaches 0:36:16 - What world models are 0:48:41 - Fractals 0:57:43 - How the...
info_outlineWhat's the difference between a large language model and the human brain? And what's wrong with our theories of agency? In this episode, I chat about these questions with Jan Kulveit, who leads the Alignment of Complex Systems research group.
Patreon: patreon.com/axrpodcast
Ko-fi: ko-fi.com/axrpodcast
The transcript: axrp.net/episode/2024/05/30/episode-32-understanding-agency-jan-kulveit.html
Topics we discuss, and timestamps:
0:00:47 - What is active inference?
0:15:14 - Preferences in active inference
0:31:33 - Action vs perception in active inference
0:46:07 - Feedback loops
1:01:32 - Active inference vs LLMs
1:12:04 - Hierarchical agency
1:58:28 - The Alignment of Complex Systems group
Website of the Alignment of Complex Systems group (ACS): acsresearch.org
ACS on X/Twitter: x.com/acsresearchorg
Jan on LessWrong: lesswrong.com/users/jan-kulveit
Predictive Minds: Large Language Models as Atypical Active Inference Agents: arxiv.org/abs/2311.10215
Other works we discuss:
Active Inference: The Free Energy Principle in Mind, Brain, and Behavior: https://www.goodreads.com/en/book/show/58275959
Book Review: Surfing Uncertainty: https://slatestarcodex.com/2017/09/05/book-review-surfing-uncertainty/
The self-unalignment problem: https://www.lesswrong.com/posts/9GyniEBaN3YYTqZXn/the-self-unalignment-problem
Mitigating generative agent social dilemmas (aka language models writing contracts for Minecraft): https://social-dilemmas.github.io/
Episode art by Hamish Doodles: hamishdoodles.com