loader from loading.io

Summer Rewind: How AI impacts energy systems

ThinkEnergy

Release Date: 08/11/2025

Summer Rewind: How AI impacts energy systems show art Summer Rewind: How AI impacts energy systems

ThinkEnergy

Summer rewind: Greg Lindsay is an urban tech expert and a Senior Fellow at MIT. He’s also a two-time Jeopardy champion and the only human to go undefeated against IBM’s Watson. Greg joins thinkenergy to talk about how artificial intelligence (AI) is reshaping how we manage, consume, and produce energy—from personal devices to provincial grids, its rapid growth to the rising energy demand from AI itself. Listen in to learn how AI impacts our energy systems and what it means individually and industry-wide. Related links: ●       Greg Lindsay website: ...

info_outline
Summer Rewind: Reimagining heating and cooling with district energy systems show art Summer Rewind: Reimagining heating and cooling with district energy systems

ThinkEnergy

Summer rewind: Scott Demark, President and CEO of Zibi Community Utility, joins thinkenergy to discuss how our relationship with energy is changing. With two decades of expertise in clean energy and sustainable development, Scott suggests reimagining traditional energy applications for heating and cooling. He shares how strategic energy distribution can transform urban environments, specifically how district energy systems optimize energy flow between buildings for a greener future. Listen in.   Related links   ●     Scott Demark on LinkedIn: ...

info_outline
Summer Rewind: Capturing lightning in a bottle with Energy Storage Canada show art Summer Rewind: Capturing lightning in a bottle with Energy Storage Canada

ThinkEnergy

Summer rewind: What does Canada do with excess energy? How is it stored today and how will it be stored as the energy industry evolves? Justin Rangooni, CEO of Energy Storage Canada, shares how energy storage supports a sustainable future for Canadians—from enhanced flexibility to affordability, large-scale grids to individual consumer needs. Listen to episode 152 of thinkenergy to learn about ongoing projects and challenges facing the energy storage sector in Canada.   Related links   ●     Justin Rangooni on LinkedIn: ●     Energy...

info_outline
Powering tomorrow: investing in Ottawa’s energy future show art Powering tomorrow: investing in Ottawa’s energy future

ThinkEnergy

Powering tomorrow: investing in Ottawa’s energy future Hydro Ottawa recently unveiled its  2026-2030  investment plan focused on modernizing and strengthening the grid. The way we’re consuming energy is changing, and this investment plan focuses on four key areas that highlight why Hydro Ottawa is taking action, how they plan on doing it, and what it all means for you.  Hydro Ottawa’s Chief Operating Officer, Distribution and Generation, Guillaume Paradis, joins thinkenergy to dive a little deeper into those focus areas, and why they matter, with host Trevor...

info_outline
thinkenergy shorts: what factors into your monthly electricity bill? show art thinkenergy shorts: what factors into your monthly electricity bill?

ThinkEnergy

We've all been there, trying to decode a document filled with acronyms and numbers. In this episode of thinkenergy, host Trevor Freeman pulls back the curtain on the typical Ontario electricity bill. Learn about what makes up your monthly bill and exactly where your money goes. From generation mix to infrastructure and provincial differences, tune in as Trevor sheds light on the diverse factors that influence electricity prices across Canada.   Related links   Trevor Freeman on LinkedIn: Hydro Ottawa:      To subscribe using Apple Podcasts:    To...

info_outline
Cleaner, cheaper, smarter: Ontario’s Save on Energy framework explained show art Cleaner, cheaper, smarter: Ontario’s Save on Energy framework explained

ThinkEnergy

What does Ontario’s new 12-year Save on Energy framework mean for homeowners, businesses, and the future of energy in Canada? Learn how the program supports smarter grid planning and energy use, lowers emissions, improves affordability, and helps Ontarians make the switch to cleaner technologies. Tam Wagner from the Independent Electricity System Operator (IESO) joins thinkenergy to explain why conservation is a critical tool in Canada’s transition to clean energy. Listen to episode 158 today.   Related links   ●     Tam Wagner: ...

info_outline
thinkenergy shorts: the energy story hits close to home show art thinkenergy shorts: the energy story hits close to home

ThinkEnergy

Canada’s energy conversation grows louder every day. But before we can address the national goals or even energy independence, we need to look at our local utilities and energy systems to understand their capabilities. Host Trevor Freeman walks through how the energy conversation needs to start locally, how to future-proof energy systems, and what the hardworking crews do to build and maintain these systems. Listen to episode 156 of thinkenergy.   Related links   Trevor Freeman on LinkedIn: Hydro Ottawa:      To subscribe using Apple Podcasts:    To...

info_outline
Empowering power: how AI impacts energy systems show art Empowering power: how AI impacts energy systems

ThinkEnergy

Greg Lindsay is an urban tech expert and a Senior Fellow at MIT. He’s also a two-time Jeopardy champion and the only human to go undefeated against IBM’s Watson. Greg joins thinkenergy to talk about how artificial intelligence (AI) is reshaping how we manage, consume, and produce energy—from personal devices to provincial grids. He also explores its rapid growth and the rising energy demand from AI itself. Listen in to learn how AI impacts our energy systems and what it means individually and industry-wide. Related links ●     Greg Lindsay website: ...

info_outline
Reimagining heating and cooling with district energy systems show art Reimagining heating and cooling with district energy systems

ThinkEnergy

Scott Demark, President and CEO of Zibi Community Utility, joins thinkenergy to discuss how our relationship with energy is changing. With two decades of expertise in clean energy and sustainable development, Scott suggests reimagining traditional energy applications for heating and cooling. He shares how strategic energy distribution can transform urban environments, specifically how district energy systems optimize energy flow between buildings for a greener future. Listen in.   Related links   Scott Demark on LinkedIn: Zibi Community Utility: Markham District Energy Inc: ...

info_outline
thinkenergy shorts: the on and offs of trading electricity show art thinkenergy shorts: the on and offs of trading electricity

ThinkEnergy

Will U.S. tariffs disrupt Canada’s energy sector? What is the current state of cross-border electricity trade? How can we strengthen interprovincial connections to secure a sustainable energy future in our country? Host Trevor Freeman summarizes the on and offs of Canada’s electricity trade. Tune in to learn about the complexities and challenges of evolving energy policies, infrastructure, and regulatory landscapes governed by both federal and provincial authorities. Related links   ●     Canadian Energy Regulator: ●     The Transition...

info_outline
 
More Episodes

Summer rewind: Greg Lindsay is an urban tech expert and a Senior Fellow at MIT. He’s also a two-time Jeopardy champion and the only human to go undefeated against IBM’s Watson. Greg joins thinkenergy to talk about how artificial intelligence (AI) is reshaping how we manage, consume, and produce energy—from personal devices to provincial grids, its rapid growth to the rising energy demand from AI itself. Listen in to learn how AI impacts our energy systems and what it means individually and industry-wide.

Related links:

       Greg Lindsay website: https://greglindsay.org/

       Greg Lindsay on LinkedIn: https://www.linkedin.com/in/greg-lindsay-8b16952/

       International Energy Agency (IEA): https://www.iea.org/

       Trevor Freeman on LinkedIn: https://www.linkedin.com/in/trevor-freeman-p-eng-cem-leed-ap-8b612114/

       Hydro Ottawa: https://hydroottawa.com/en 

 

To subscribe using Apple Podcasts:

https://podcasts.apple.com/us/podcast/thinkenergy/id1465129405

 

To subscribe using Spotify:

https://open.spotify.com/show/7wFz7rdR8Gq3f2WOafjxpl

 

To subscribe on Libsyn:

http://thinkenergy.libsyn.com/

---

Subscribe so you don't miss a video: https://www.youtube.com/user/hydroottawalimited

 

Follow along on Instagram: https://www.instagram.com/hydroottawa

 

Stay in the know on Facebook: https://www.facebook.com/HydroOttawa

 

Keep up with the posts on X: https://twitter.com/thinkenergypod

---

Transcript:

Trevor Freeman  00:00

Hi everyone. Well, summer is here, and the think energy team is stepping back a bit to recharge and plan out some content for the next season. We hope all of you get some much needed downtime as well, but we aren't planning on leaving you hanging over the next few months, we will be re releasing some of our favorite episodes from the past year that we think really highlight innovation, sustainability and community. These episodes highlight the changing nature of how we use and manage energy, and the investments needed to expand, modernize and strengthen our grid in response to that. All of this driven by people and our changing needs and relationship to energy as we move forward into a cleaner, more electrified future, the energy transition, as we talk about many times on this show. Thanks so much for listening, and we'll be back with all new content in September. Until then, happy listening.

 

Trevor Freeman  00:55

Welcome to think energy, a podcast that dives into the fast changing world of energy through conversations with industry leaders, innovators and people on the front lines of the energy transition. Join me, Trevor Freeman, as I explore the traditional, unconventional and up and coming facets of the energy industry. If you have any thoughts feedback or ideas for topics we should cover, please reach out to us at think energy at hydro ottawa.com, Hi everyone. Welcome back. Artificial intelligence, or AI, is a term that you're likely seeing and hearing everywhere today, and with good reason, the effectiveness and efficiency of today's AI, along with the ever increasing applications and use cases mean that in just the past few years, AI went from being a little bit fringe, maybe a little bit theoretical to very real and likely touching everyone's day to day lives in ways that we don't even notice, and we're just at the beginning of what looks to be a wave of many different ways that AI will shape and influence our society and our lives in the years to come. And the world of energy is no different. AI has the potential to change how we manage energy at all levels, from our individual devices and homes and businesses all the way up to our grids at the local, provincial and even national and international levels. At the same time, AI is also a massive consumer of energy, and the proliferation of AI data centers is putting pressure on utilities for more and more power at an unprecedented pace. But before we dive into all that, I also think it will be helpful to define what AI is. After all, the term isn't new. Like me, many of our listeners may have grown up hearing about Skynet from Terminator, or how from 2001 A Space Odyssey, but those malignant, almost sentient versions of AI aren't really what we're talking about here today. And to help shed some light on both what AI is as well as what it can do and how it might influence the world of energy, my guest today is Greg Lindsay, to put it in technical jargon, Greg's bio is super neat, so I do want to take time to run through it properly. Greg is a non resident Senior Fellow of MIT's future urban collectives lab Arizona State University's threat casting lab and the Atlantic Council's Scowcroft center for strategy and security. Most recently, he was a 2022-2023 urban tech Fellow at Cornell Tech's Jacobs Institute, where he explored the implications of AI and augmented reality at an urban scale. Previously, he was an urbanist in resident, which is a pretty cool title, at BMW minis urban tech accelerator, urban X, as well as the director of Applied Research at Montreal's new cities and Founding Director of Strategy at its mobility focused offshoot, co motion. He's advised such firms as Intel, Samsung, Audi, Hyundai, IKEA and Starbucks, along with numerous government entities such as 10 Downing Street, us, Department of Energy and NATO. And finally, and maybe coolest of all, Greg is also a two time Jeopardy champion and the only human to go undefeated against IBM's Watson. So on that note, Greg Lindsey, welcome to the show.

 

Greg Lindsay  04:14

Great to be here. Thanks for having me. Trevor,

 

Trevor Freeman  04:16

So Greg, we're here to talk about AI and the impacts that AI is going to have on energy, but AI is a bit of one of those buzzwords that we hear out there in a number of different spheres today. So let's start by setting the stage of what exactly we're talking about. So what do we mean when we say AI or artificial intelligence?

 

Speaker 1  04:37

Well, I'd say the first thing to keep in mind is that it is neither artificial nor intelligence. It's actually composites of many human hands making it. And of course, it's not truly intelligent either. I think there's at least two definitions for the layman's purposes. One is statistical machine learning. You know that is the previous generation of AI, we could say, doing deep, deep statistical analysis, looking for patterns fitting to. Patterns doing prediction. There's a great book, actually, by some ut professors at monk called prediction machines, which that was a great way of thinking about machine learning and sense of being able to do large scale prediction at scale. And that's how I imagine hydro, Ottawa and others are using this to model out network efficiencies and predictive maintenance and all these great uses. And then the newer, trendier version, of course, is large language models, your quads, your chat gpts, your others, which are based on transformer models, which is a whole series of work that many Canadians worked on, including Geoffrey Hinton and others. And this is what has produced the seemingly magical abilities to produce text and images on demand and large scale analysis. And that is the real power hungry beast that we think of as AI today.

 

Trevor Freeman  05:42

Right! So different types of AI. I just want to pick those apart a little bit. When you say machine learning, it's kind of being able to repetitively look at something or a set of data over and over and over again. And because it's a computer, it can do it, you know, 1000s or millions of times a second, and learn what, learn how to make decisions based on that. Is that fair to say?

 

Greg Lindsay  06:06

That's fair to say. And the thing about that is, is like you can train it on an output that you already know, large language models are just vomiting up large parts of pattern recognition, which, again, can feel like magic because of our own human brains doing it. But yeah, machine learning, you can, you know, you can train it to achieve outcomes. You can overfit the models where it like it's trained too much in the past, but, yeah, it's a large scale probabilistic prediction of things, which makes it so powerful for certain uses.

 

Trevor Freeman  06:26

Yeah, one of the neatest explanations or examples I've seen is, you know, you've got these language models where it seems like this AI, whether it's chat, DBT or whatever, is writing really well, like, you know, it's improving our writing. It's making things sound better. And it seems like it's got a brain behind it, but really, what it's doing is it's going out there saying, What have millions or billions of other people written like this? And how can I take the best things of that? And it can just do that really quickly, and it's learned that that model, so that's super helpful to understand what we're talking about here. So obviously, in your work, you look at the impact of AI on a number of different aspects of our world, our society. What we're talking about here today is particularly the impact of AI when it comes to energy. And I'd like to kind of bucketize our conversation a little bit today, and the first area I want to look at is, what will ai do when it comes to energy for the average Canadian? Let's say so in my home, in my business, how I move around? So I'll start with that. It's kind of a high level conversation. Let's start talking about the different ways that AI will impact you know that our average listener here?

 

Speaker 1  07:41

Um, yeah, I mean, we can get into a discussion about what it means for the average Canadian, and then also, of course, what it means for Canada in the world as well, because I just got back from South by Southwest in Austin, and, you know, for the second, third year in row, AI was on everyone's lips. But really it's the energy. Is the is the bottleneck. It's the forcing factor. Everyone talked about it, the fact that all the data centers we can get into that are going to be built in the direction of energy. So, so, yeah, energy holds the key to the puzzle there. But, um, you know, from the average gain standpoint, I mean, it's a question of, like, how will these tools actually play out, you know, inside of the companies that are using this, right? And that was a whole other discussion too. It's like, okay, we've been playing around with these tools for two, three years now, what do they actually use to deliver value of your large language model? So I've been saying this for 10 years. If you look at the older stuff you could start with, like smart thermostats, even look at the potential savings of this, of basically using machine learning to optimize, you know, grid optimize patterns of usage, understanding, you know, the ebbs and flows of the grid, and being able to, you know, basically send instructions back and forth. So you know there's stats. You know that, basically you know that you know you could save 10 to 25% of electricity bills. You know, based on this, you could reduce your heating bills by 10 to 15% again, it's basically using this at very large scales of the scale of hydro Ottawa, bigger, to understand this sort of pattern usage. But even then, like understanding like how weather forecasts change, and pulling that data back in to basically make fine tuning adjustments to the thermostats and things like that. So that's one stands out. And then, you know, we can think about longer term. I mean, yeah, lots have been lots has been done on imagining, like electric mobility, of course, huge in Canada, and what that's done to sort of change the overall energy mix virtual power plants. This is something that I've studied, and we've been writing about at Fast Company. At Fast Company beyond for 20 years, imagining not just, you know, the ability to basically, you know, feed renewable electricity back into the grid from people's solar or from whatever sources they have there, but the ability of utilities to basically go in and fine tune, to have that sort of demand shaping as well. And then I think the most interesting stuff, at least in demos, and also blockchain, which has had many theoretical uses, and I've got to see a real one. But one of the best theoretical ones was being able to create neighborhood scale utilities. Basically my cul de sac could have one, and we could trade clean electrons off of our solar panels through our batteries and home scale batteries, using Blockchain to basically balance this out. Yeah, so there's lots of potential, but yeah, it comes back to the notion of people want cheaper utility bills. I did this piece 10 years ago for the Atlantic Council on this we looked at a multi country survey, and the only reason anybody wanted a smart home, which they just were completely skeptical about, was to get those cheaper utility bills. So people pay for that.

 

Trevor Freeman  10:19

I think it's an important thing to remember, obviously, especially for like the nerds like me, who part of my driver is, I like that cool new tech. I like that thing that I can play with and see my data. But for most people, no matter what we're talking about here, when it comes to that next technology, the goal is make my life a little bit easier, give me more time or whatever, and make things cheaper. And I think especially in the energy space, people aren't putting solar panels on their roof because it looks great. And, yeah, maybe people do think it looks great, but they're putting it up there because they want cheaper electricity. And it's going to be the same when it comes to batteries. You know, there's that add on of resiliency and reliability, but at the end of the day, yeah, I want my bill to be cheaper. And what I'm hearing from you is some of the things we've already seen, like smart thermostats get better as AI gets better. Is that fair to say?

 

Greg Lindsay  11:12

Well, yeah, on the machine learning side, that you know, you get ever larger data points. This is why data is the coin of the realm. This is why there's a race to collect data on everything. Is why every business model is data collection and everything. Because, yes, not only can they get better, but of course, you know, you compile enough and eventually start finding statistical inferences you never meant to look for. And this is why I've been involved. Just as a side note, for example, of cities that have tried to implement their own data collection of electric scooters and eventually electric vehicles so they could understand these kinds of patterns, it's really the key to anything. And so it's that efficiency throughput which raises some really interesting philosophical questions, particularly about AI like, this is the whole discussion on deep seek. Like, if you make the models more efficient, do you have a Jevons paradox, which is the paradox of, like, the more energy you save through efficiency, the more you consume because you've made it cheaper. So what does this mean that you know that Canadian energy consumption is likely to go up the cleaner and cheaper the electrons get. It's one of those bedeviling sort of functions.

 

Trevor Freeman  12:06

Yeah interesting. That's definitely an interesting way of looking at it. And you referenced this earlier, and I will talk about this. But at the macro level, the amount of energy needed for these, you know, AI data centers in order to do all this stuff is, you know, we're seeing that explode.

 

Greg Lindsay  12:22

Yeah, I don't know that. Canadian statistics my fingertips, but I brought this up at Fast Company, like, you know, the IEA, I think International Energy Agency, you know, reported a 4.3% growth in the global electricity grid last year, and it's gonna be 4% this year. That does not sound like much. That is the equivalent of Japan. We're adding in Japan every year to the grid for at least the next two to three years. Wow. And that, you know, that's global South, air conditioning and other needs here too, but that the data centers on top is like the tip of the spear. It's changed all this consumption behavior, where now we're seeing mothballed coal plants and new plants and Three Mile Island come back online, as this race for locking up electrons, for, you know, the race to build God basically, the number of people in AI who think they're literally going to build weekly godlike intelligences, they'll, they won't stop at any expense. And so they will buy as much energy as they can get.

 

Trevor Freeman  13:09

Yeah, well, we'll get to that kind of grid side of things in a minute. Let's stay at the home first. So when I look at my house, we talked about smart thermostats. We're seeing more and more automation when it comes to our homes. You know, we can program our lights and our door locks and all this kind of stuff. What does ai do in order to make sure that stuff is contributing to efficiency? So I want to do all those fun things, but use the least amount of energy possible.

 

Greg Lindsay  13:38

Well, you know, I mean, there's, again, there's various metrics there to basically, sort of, you know, program your lights. And, you know, Nest is, you know, Google. Nest is an example of this one, too, in terms of basically learning your ebb and flow and then figuring out how to optimize it over the course of the day. So you can do that, you know, we've seen, again, like the home level. We've seen not only the growth in solar panels, but also in those sort of home battery integration. I was looking up that Tesla Powerwall was doing just great in Canada, until the last couple of months. I assume so, but I it's been, it's been heartening to see that, yeah, this sort of embrace of home energy integration, and so being able to level out, like, peak flow off the grid, so Right? Like being able to basically, at moments of peak demand, to basically draw on your own local resources and reduce that overall strain. So there's been interesting stuff there. But I want to focus for a moment on, like, terms of thinking about new uses. Because, you know, again, going back to how AI will influence the home and automation. You know, Jensen Wong of Nvidia has talked about how this will be the year of robotics. Google, Gemini just applied their models to robotics. There's startups like figure there's, again, Tesla with their optimists, and, yeah, there's a whole strain of thought that we're about to see, like home robotics, perhaps a dream from like, the 50s. I think this is a very Disney World esque Epcot Center, yeah, with this idea of jetsy, yeah, of having home robots doing work. You can see concept videos a figure like doing the actual vacuuming. I mean, we invented Roombas to this, but, but it also, I, you know, I've done a lot of work. Our own thinking around electric delivery vehicles. We could talk a lot about drones. We could talk a lot about the little robots that deliver meals on the sidewalk. There's a lot of money in business models about increasing access and people needing to maybe move less, to drive and do all these trips to bring it to them. And that's a form of home automation, and that's all batteries. That is all stuff off the grid too. So AI is that enable those things, these things that can think and move and fly and do stuff and do services on your behalf, and so people might find this huge new source of demand from that as well.

 

Trevor Freeman  15:29

Yeah, that's I hadn't really thought about the idea that all the all these sort of conveniences and being able to summon them to our homes cause us to move around less, which also impacts transportation, which is another area I kind of want to get to. And I know you've, you've talked a little bit about E mobility, so where do you see that going? And then, how does AI accelerate that transition, or accelerate things happening in that space?

 

Greg Lindsay  15:56

Yeah, I mean, I again, obviously the EV revolutions here Canada like, one of the epicenters Canada, Norway there, you know, that still has the vehicle rebates and things. So, yeah. I mean, we've seen, I'm here in Montreal, I think we've got, like, you know, 30 to 13% of sales is there, and we've got our 2035, mandate. So, yeah. I mean, you see this push, obviously, to harness all of Canada's clean, mostly hydro electricity, to do this, and, you know, reduce its dependence on fossil fuels for either, you know, Climate Change Politics reasons, but also just, you know, variable energy prices. So all of that matters. But, you know, I think the key to, like the electric mobility revolution, again, is, is how it's going to merge with AI and it's, you know, it's not going to just be the autonomous, self driving car, which is sort of like the horseless carriage of autonomy. It's gonna be all this other stuff, you know. My friend Dan Hill was in China, and he was thinking about like, electric scooters, you know. And I mentioned this to hydro Ottawa, like, the electric scooter is one of the leading causes of how we've taken internal combustion engine vehicles offline across the world, mostly in China, and put people on clean electric motors. What happens when you take those and you make those autonomous, and you do it with, like, deep seek and some cameras, and you sort of weld it all together so you could have a world of a lot more stuff in motion, and not just this world where we have to drive as much. And that, to me, is really exciting, because that changes, like urban patterns, development patterns, changes how you move around life, those kinds of things as well. That's that might be a little farther out, but, but, yeah, this sort of like this big push to build out domestic battery industries, to build charging points and the sort of infrastructure there, I think it's going to go in direction, but it doesn't look anything like, you know, a sedan or an SUV that just happens to be electric.

 

Trevor Freeman  17:33

I think that's a the step change is change the drive train of the existing vehicles we have, you know, an internal combustion to a battery. The exponential change is exactly what you're saying. It's rethinking this.

 

Greg Lindsay  17:47

Yeah, Ramesam and others have pointed out, I mean, again, like this, you know, it's, it's really funny to see this pushback on EVs, you know. I mean, I love a good, good roar of an internal combustion engine myself, but, but like, you know, Ramesam was an energy analyst, has pointed out that, like, you know, EVS were more cost competitive with ice cars in 2018 that's like, nearly a decade ago. And yeah, the efficiency of electric motors, particularly regenerative braking and everything, it just blows the cost curves away of ice though they will become the equivalent of keeping a thorough brat around your house kind of thing. Yeah, so, so yeah, it's just, it's that overall efficiency of the drive train. And that's the to me, the interesting thing about both electric motors, again, of autonomy is like, those are general purpose technologies. They get cheaper and smaller as they evolve under Moore's Law and other various laws, and so they get to apply to more and more stuff.

 

Trevor Freeman  18:32

Yeah. And then when you think about once, we kind of figure that out, and we're kind of already there, or close to it, if not already there, then it's opening the door to those other things you're talking about. Of, well, do we, does everybody need to have that car in their driveway? Are we rethinking how we're actually just doing transportation in general? And do we need a delivery truck? Or can it be delivery scooter? Or what does that look like?

 

Greg Lindsay  18:54

Well, we had a lot of those discussions for a long time, particularly in the mobility space, right? Like, and like ride hailing, you know, like, oh, you know, that was always the big pitch of an Uber is, you know, your car's parked in your driveway, like 94% of the time. You know, what happens if you're able to have no mobility? Well, we've had 15 years of Uber and these kinds of services, and we still have as many cars. But people are also taking this for mobility. It's additive. And I raised this question, this notion of like, it's just sort of more and more, more options, more availability, more access. Because the same thing seems to be going on with energy now too. You know, listeners been following along, like the conversation in Houston, you know, a week or two ago at Sarah week, like it's the whole notion of energy realism. And, you know, there's the new book out, more is more is more, which is all about the fact that we've never had an energy transition. We just kept piling up. Like the world burned more biomass last year than it did in 1900 it burned more coal last year than it did at the peak of coal. Like these ages don't really end. They just become this sort of strata as we keep piling energy up on top of it. And you know, I'm trying to sound the alarm that we won't have an energy transition. What that means for climate change? But similar thing, it's. This rebound effect, the Jevons paradox, named after Robert Stanley Jevons in his book The question of coal, where he noted the fact that, like, England was going to need more and more coal. So it's a sobering thought. But, like, I mean, you know, it's a glass half full, half empty in many ways, because the half full is like increasing technological options, increasing changes in lifestyle. You can live various ways you want, but, but, yeah, it's like, I don't know if any of it ever really goes away. We just get more and more stuff,

 

Trevor Freeman  20:22

Exactly, well. And, you know, to hear you talk about the robotics side of things, you know, looking at the home, yeah, more, definitely more. Okay, so we talked about kind of home automation. We've talked about transportation, how we get around. What about energy management? And I think about this at the we'll talk about the utility side again in a little bit. But, you know, at my house, or for my own personal use in my life, what is the role of, like, sort of machine learning and AI, when it comes to just helping me manage my own energy better and make better decisions when it comes to energy? ,

 

Greg Lindsay  20:57

Yeah, I mean, this is where it like comes in again. And you know, I'm less and less of an expert here, but I've been following this sort of discourse evolve. And right? It's the idea of, you know, yeah, create, create. This the set of tools in your home, whether it's solar panels or batteries or, you know, or Two Way Direct, bi directional to the grid, however it works. And, yeah, and people, you know, given this option of savings, and perhaps, you know, other marketing messages there to curtail behavior. You know? I mean, I think the short answer the question is, like, it's an app people want, an app that tell them basically how to increase the efficiency of their house or how to do this. And I should note that like, this has like been the this is the long term insight when it comes to like energy and the clean tech revolution. Like my Emery Levin says this great line, which I've always loved, which is, people don't want energy. They want hot showers and cold beer. And, you know, how do you, how do you deliver those things through any combination of sticks and carrots, basically like that. So, So, hence, why? Like, again, like, you know, you know, power walls, you know, and, and, and, you know, other sort of AI controlled batteries here that basically just sort of smooth out to create the sort of optimal flow of electrons into your house, whether that's coming drive directly off the grid or whether it's coming out of your backup and then recharging that the time, you know, I mean, the surveys show, like, more than half of Canadians are interested in this stuff, you know, they don't really know. I've got one set here, like, yeah, 61% are interested in home energy tech, but only 27 understand, 27% understand how to optimize them. So, yeah. So people need, I think, perhaps, more help in handing that over. And obviously, what's exciting for the, you know, the utility level is, like, you know, again, aggregate all that individual behavior together and you get more models that, hope you sort of model this out, you know, at both greater scale and ever more fine grained granularity there. So, yeah, exactly. So I think it's really interesting, you know, I don't know, like, you know, people have gamified it. What was it? I think I saw, like, what is it? The affordability fund trust tried to basically gamify AI energy apps, and it created various savings there. But a lot of this is gonna be like, as a combination like UX design and incentives design and offering this to people too, about, like, why you should want this and money's one reason, but maybe there's others.

 

Trevor Freeman  22:56

Yeah, and we talk about in kind of the utility sphere, we talk about how customers, they don't want all the data, and then have to go make their own decisions. They want those decisions to be made for them, and they want to say, look, I want to have you tell me the best rate plan to be on. I want to have you automatically switch me to the best rate plan when my consumption patterns change and my behavior chat patterns change. That doesn't exist today, but sort of that fast decision making that AI brings will let that become a reality sometime in the future,

 

Greg Lindsay  23:29

And also in theory, this is where LLMs come into play. Is like, you know, to me, what excites me the most about that is the first time, like having a true natural language interface, like having being able to converse with an, you know, an AI, let's hopefully not chat bot. I think we're moving out on chat bots, but some sort of sort of instantiation of an AI to be like, what plan should I be on? Can you tell me what my behavior is here and actually having some sort of real language conversation with it? Not decision trees, not event statements, not chat bots.

 

Trevor Freeman  23:54

Yeah, absolutely. Okay, so we've kind of teased around this idea of looking at the utility levels, obviously, at hydro Ottawa, you referenced this just a minute ago. We look at all these individual cases, every home that has home automation or solar storage, and we want to aggregate that and understand what, what can we do to help manage the grid, help manage all these new energy needs, shift things around. So let's talk a little bit about the role that AI can play at the utility scale in helping us manage the grid.

 

Greg Lindsay  24:28

All right? Well, yeah, there's couple ways to approach it. So one, of course, is like, let's go back to, like, smart meters, right? Like, and this is where I don't know how many hydro Ottawa has, but I think, like, BC Hydro has like, 2 million of them, sometimes they get politicized, because, again, this gets back to this question of, like, just, just how much nanny state you want. But, you know, you know, when you reach the millions, like, yeah, you're able to get that sort of, you know, obviously real time, real time usage, real time understanding. And again, if you can do that sort of grid management piece where you can then push back, it's visual game changer. But, but yeah. I mean, you know, yeah, be. See hydro is pulling in. I think I read like, like, basically 200 million data points a day. So that's a lot to train various models on. And, you know, I don't know exactly the kind of savings they have, but you can imagine there, whether it's, you know, them, or Toronto Hydro, or hydro Ottawa and others creating all these monitoring points. And again, this is the thing that bedells me, by the way, just philosophically about modern life, the notion of like, but I don't want you to be collecting data off me at all times, but look at what you can do if you do It's that constant push pull of some sort of combination of privacy and agency, and then just the notion of like statistics, but, but there you are, but, but, yeah, but at the grid level, then I mean, like, yeah. I mean, you can sort of do the same thing where, like, you know, I mean, predictive maintenance is the obvious one, right? I have been writing about this for large enterprise software companies for 20 years, about building these data points, modeling out the lifetime of various important pieces equipment, making sure you replace them before you have downtime and terrible things happen. I mean, as we're as we're discussing this, look at poor Heathrow Airport. I am so glad I'm not flying today, electrical substation blowing out two days of the world's most important hub offline. So that's where predictive maintenance comes in from there. And, yeah, I mean, I, you know, I again, you know, modeling out, you know, energy flow to prevent grid outages, whether that's, you know, the ice storm here in Quebec a couple years ago. What was that? April 23 I think it was, yeah, coming up in two years. Or our last ice storm, we're not the big one, but that one, you know, where we had big downtime across the grid, like basically monitoring that and then I think the other big one for AI is like, Yeah, is this, this notion of having some sort of decision support as well, too, and sense of, you know, providing scenarios and modeling out at scale the potential of it? And I don't think, I don't know about this in a grid case, but the most interesting piece I wrote for Fast Company 20 years ago was an example, ago was an example of this, which was a fledgling air taxi startup, but they were combining an agent based model, so using primitive AI to create simple rules for individual agents and build a model of how they would behave, which you can create much more complex models. Now we could talk about agents and then marrying that to this kind of predictive maintenance and operations piece, and marrying the two together. And at that point, you could have a company that didn't exist, but that could basically model itself in real time every day in the life of what it is. You can create millions and millions and millions of Monte Carlo operations. And I think that's where perhaps both sides of AI come together truly like the large language models and agents, and then the predictive machine learning. And you could basically hydro or others, could build this sort of deep time machine where you can model out all of these scenarios, millions and millions of years worth, to understand how it flows and contingencies as well. And that's where it sort of comes up. So basically something happens. And like, not only do you have a set of plans, you have an AI that has done a million sets of these plans, and can imagine potential next steps of this, or where to deploy resources. And I think in general, that's like the most powerful use of this, going back to prediction machines and just being able to really model time in a way that we've never had that capability before. And so you probably imagine the use is better than I.

 

Trevor Freeman  27:58

Oh man, it's super fascinating, and it's timely. We've gone through the last little while at hydro Ottawa, an exercise of updating our playbook for emergencies. So when there are outages, what kind of outage? What's the sort of, what are the trigger points to go from, you know, what we call a level one to a level two to level three. But all of this is sort of like people hours that are going into that, and we're thinking through these scenarios, and we've got a handful of them, and you're just kind of making me think, well, yeah, what if we were able to model that out? And you bring up this concept of agents, let's tease into that a little bit explain what you mean when you're talking about agents.

 

Greg Lindsay  28:36

Yeah, so agentic systems, as the term of art is, AI instantiations that have some level of autonomy. And the archetypal example of this is the Stanford Smallville experiment, where they took basically a dozen large language models and they gave it an architecture where they could give it a little bit of backstory, ruminate on it, basically reflect, think, decide, and then act. And in this case, they used it to plan a Valentine's Day party. So they played out real time, and the LLM agents, like, even played matchmaker. They organized the party, they sent out invitations, they did these sorts of things. Was very cute. They put it out open source, and like, three weeks later, another team of researchers basically put them to work writing software programs. So you can see they organized their own workflow. They made their own decisions. There was a CTO. They fact check their own work. And this is evolving into this grand vision of, like, 1000s, millions of agents, just like, just like you spin up today an instance of Amazon Web Services to, like, host something in the cloud. You're going to spin up an agent Nvidia has talked about doing with healthcare and others. So again, coming back to like, the energy implications of that, because it changes the whole pattern. Instead of huge training runs requiring giant data centers. You know, it's these agents who are making all these calls and doing more stuff at the edge, but, um, but yeah, in this case, it's the notion of, you know, what can you put the agents to work doing? And I bring this up again, back to, like, predictive maintenance, or for hydro Ottawa, there's another amazing paper called virtual in real life. And I chatted with one of the principal authors. It created. A half dozen agents who could play tour guide, who could direct you to a coffee shop, who do these sorts of things, but they weren't doing it in a virtual world. They were doing it in the real one. And to do it in the real world, you took the agent, you gave them a machine vision capability, so added that model so they could recognize objects, and then you set them loose inside a digital twin of the world, in this case, something very simple, Google Street View. And so in the paper, they could go into like New York Central Park, and they could count every park bench and every waste bin and do it in seconds and be 99% accurate. And so agents were monitoring the landscape. Everything's up, because you can imagine this in the real world too, that we're going to have all the time. AIS roaming the world, roaming these virtual maps, these digital twins that we build for them and constantly refresh from them, from camera data, from sensor data, from other stuff, and tell us what this is. And again, to me, it's really exciting, because that's finally like an operating system for the internet of things that makes sense, that's not so hardwired that you can ask agents, can you go out and look for this for me? Can you report back on this vital system for me? And they will be able to hook into all of these kinds of representations of real time data where they're emerging from, and give you aggregated reports on this one. And so, you know, I think we have more visibility in real time into the real world than we've ever had before.

 

Trevor Freeman  31:13

Yeah, I want to, I want to connect a few dots here for our listeners. So bear with me for a second. Greg. So for our listeners, there was a podcast episode we did about a year ago on our grid modernization roadmap, and we talked about one of the things we're doing with grid modernization at hydro Ottawa and utilities everywhere doing this is increasing the sensor data from our grid. So we're, you know, right now, we've got visibility sort of to our station level, sometimes one level down to some switches. But in the future, we'll have sensors everywhere on our grid, every switch, every device on our grid, will have a sensor gathering data. Obviously, you know, like you said earlier, millions and hundreds of millions of data points every second coming in. No human can kind of make decisions on that, and what you're describing is, so now we've got all this data points, we've got a network of information out there, and you could create this agent to say, Okay, you are. You're my transformer agent. Go out there and have a look at the run temperature of every transformer on the network, and tell me where the anomalies are, which ones are running a half a degree or two degrees warmer than they should be, and report back. And now I know hydro Ottawa, that the controller, the person sitting in the room, knows, Hey, we should probably go roll a truck and check on that transformer, because maybe it's getting end of life. Maybe it's about to go and you can do that across the entire grid. That's really fascinating,

 

Greg Lindsay  32:41

And it's really powerful, because, I mean, again, these conversations 20 years ago at IoT, you know you're going to have statistical triggers, and you would aggregate these data coming off this, and there was a lot of discussion there, but it was still very, like hardwired, and still very Yeah, I mean, I mean very probabilistic, I guess, for a word that went with agents like, yeah, you've now created an actual thing that can watch those numbers and they can aggregate from other systems. I mean, lots, lots of potential there hasn't quite been realized, but it's really exciting stuff. And this is, of course, where that whole direction of the industry is flowing. It's on everyone's lips, agents.

 

Trevor Freeman  33:12

Yeah. Another term you mentioned just a little bit ago that I want you to explain is a digital twin. So tell us what a digital twin is.

 

Greg Lindsay  33:20

So a digital twin is, well, the matrix. Perhaps you could say something like this for listeners of a certain age, but the digital twin is the idea of creating a model of a piece of equipment, of a city, of the world, of a system. And it is, importantly, it's physics based. It's ideally meant to represent and capture the real time performance of the physical object it's based on, and in this digital representation, when something happens in the physical incarnation of it, it triggers a corresponding change in state in the digital twin, and then vice versa. In theory, you know, you could have feedback loops, again, a lot of IoT stuff here, if you make changes virtually, you know, perhaps it would cause a change in behavior of the system or equipment, and the scales can change from, you know, factory equipment. Siemens, for example, does a lot of digital twin work on this. You know, SAP, big, big software companies have thought about this. But the really crazy stuff is, like, what Nvidia is proposing. So first they started with a digital twin. They very modestly called earth two, where they were going to model all the weather and climate systems of the planet down to like the block level. There's a great demo of like Jensen Wong walking you through a hurricane, typhoons striking the Taipei, 101, and how, how the wind currents are affecting the various buildings there, and how they would change that more recently, what Nvidia is doing now is, but they just at their big tech investor day, they just partner with General Motors and others to basically do autonomous cars. And what's crucial about it, they're going to train all those autonomous vehicles in an NVIDIA built digital twin in a matrix that will act, that will be populated by agents that will act like people, people ish, and they will be able to run millions of years of autonomous vehicle training in this and this is how they plan to catch up to. Waymo or, you know, if Tesla's robotaxis are ever real kind of thing, you know, Waymo built hardwired like trained on real world streets, and that's why they can only operate in certain operating domain environments. Nvidia is gambling that with large language models and transformer models combined with digital twins, you can do these huge leapfrog effects where you can basically train all sorts of synthetic agents in real world behavior that you have modeled inside the machine. So again, that's the kind, that's exactly the kind of, you know, environment that you're going to train, you know, your your grid of the future on for modeling out all your contingency scenarios.

 

Trevor Freeman  35:31

Yeah, again, you know, for to bring this to the to our context, a couple of years ago, we had our the direcco. It's a big, massive windstorm that was one of the most damaging storms that we've had in Ottawa's history, and we've made some improvements since then, and we've actually had some great performance since then. Imagine if we could model that derecho hitting our grid from a couple different directions and figure out, well, which lines are more vulnerable to wind speeds, which lines are more vulnerable to flying debris and trees, and then go address that and do something with that, without having to wait for that storm to hit. You know, once in a decade or longer, the other use case that we've talked about on this one is just modeling what's happening underground. So, you know, in an urban environments like Ottawa, like Montreal, where you are, there's tons of infrastructure under the ground, sewer pipes, water pipes, gas lines, electrical lines, and every time the city wants to go and dig up a road and replace that road, replace that sewer, they have to know what's underground. We want to know what's underground there, because our infrastructure is under there. As the electric utility. Imagine if you had a model where you can it's not just a map. You can actually see what's happening underground and determine what makes sense to go where, and model out these different scenarios of if we underground this line or that line there. So lots of interesting things when it comes to a digital twin. The digital twin and Agent combination is really interesting as well, and setting those agents loose on a model that they can play with and understand and learn from. So talk a little bit about.

 

Greg Lindsay  37:11

that. Yeah. Well, there's a couple interesting implications just the underground, you know, equipment there. One is interesting because in addition to, like, you know, you know, having captured that data through mapping and other stuff there, and having agents that could talk about it. So, you know, next you can imagine, you know, I've done some work with augmented reality XR. This is sort of what we're seeing again, you know, meta Orion has shown off their concept. Google's brought back Android XR. Meta Ray Bans are kind of an example of this. But that's where this data will come from, right? It's gonna be people wearing these wearables in the world, capturing all this camera data and others that's gonna be fed into these digital twins to refresh them. Meta has a particularly scary demo where you know where you the user, the wearer leaves their keys on their coffee table and asks metas, AI, where their coffee where their keys are, and it knows where they are. It tells them and goes back and shows them some data about it. I'm like, well, to do that, meta has to have a complete have a complete real time map of your entire house. What could go wrong. And that's what all these companies aspire to of reality. So, but yeah, you can imagine, you know, you can imagine a worker. And I've worked with a startup out of urban X, a Canada startup, Canadian startup called context steer. And you know, is the idea of having real time instructions and knowledge manuals available to workers, particularly predictive maintenance workers and line workers. So you can imagine a technician dispatched to deal with this cut in the pavement and being able to see with XR and overlay of like, what's actually under there from the digital twin, having an AI basically interface with what's sort of the work order, and basically be your assistant that can help you walk you through it, in case, you know, you run into some sort of complication there, hopefully that won't be, you know, become like, turn, turn by turn, directions for life that gets into, like, some of the questions about what we wanted out of our workforce. But there's some really interesting combinations of those things, of like, you know, yeah, mapping a world for AIS, ais that can understand it, that could ask questions in it, that can go probe it, that can give you advice on what to do in it. All those things are very close for good and for bad.

 

Trevor Freeman  39:03

You kind of touched on my next question here is, how do we make sure this is all in the for good or mostly in the for good category, and not the for bad category you talk in one of the papers that you wrote about, you know, AI and augmented reality in particular, really expanding the attack surface for malicious actors. So we're creating more opportunities for whatever the case may be, if it's hacking or if it's malware, or if it's just, you know, people that are up to nefarious things. How do we protect against that? How do we make sure that our systems are safe that the users of our system. So in our case, our customers, their data is safe, their the grid is safe. How do we make sure that?

 

Greg Lindsay  39:49

Well, the very short version is, whatever we're spending on cybersecurity, we're not spending enough. And honestly, like everybody who is no longer learning to code, because we can be a quad or ChatGPT to do it, I. Is probably there should be a whole campaign to repurpose a big chunk of tech workers into cybersecurity, into locking down these systems, into training ethical systems. There's a lot of work to be done there. But yeah, that's been the theme for you know that I've seen for 10 years. So that paper I mentioned about sort of smart homes, the Internet of Things, and why people would want a smart home? Well, yeah, the reason people were skeptical is because they saw it as basically a giant attack vector. My favorite saying about this is, is, there's a famous Arthur C Clarke quote that you know, any sufficiently advanced technology is magic Tobias Ravel, who works at Arup now does their head of foresight has this great line, any sufficiently advanced hacking will feel like a haunting meaning. If you're in a smart home that's been hacked, it will feel like you're living in a haunted house. Lights will flicker on and off, and systems will turn and go haywire. It'll be like you're living with a possessed house. And that's true of cities or any other systems. So we need to do a lot of work on just sort of like locking that down and securing that data, and that is, you know, we identified, then it has to go all the way up and down the supply chain, like you have to make sure that there is, you know, a chain of custody going back to when components are made, because a lot of the attacks on nest, for example. I mean, you want to take over a Google nest, take it off the wall and screw the back out of it, which is a good thing. It's not that many people are prying open our thermostats, but yeah, if you can get your hands on it, you can do a lot of these systems, and you can do it earlier in the supply chain and sorts of infected pieces and things. So there's a lot to be done there. And then, yeah, and then, yeah, and then there's just a question of, you know, making sure that the AIs are ethically trained and reinforced. And, you know, a few people want to listeners, want to scare themselves. You can go out and read some of the stuff leaking out of anthropic and others and make clot of, you know, models that are trying to hide their own alignments and trying to, like, basically copy themselves. Again, I don't believe that anything things are alive or intelligent, but they exhibit these behaviors as part of the probabilistic that's kind of scary. So there's a lot to be done there. But yeah, we worked on this, the group that I do foresight with Arizona State University threat casting lab. We've done some work for the Secret Service and for NATO and, yeah, there'll be, you know, large scale hackings on infrastructure. Basically the equivalent can be the equivalent can be the equivalent to a weapons of mass destruction attack. We saw how Russia targeted in 2014 the Ukrainian grid and hacked their nuclear plans. This is essential infrastructure more important than ever, giving global geopolitics say the least, so that needs to be under consideration. And I don't know, did I scare you enough yet? What are the things we've talked through here that, say the least about, you know, people being, you know, tricked and incepted by their AI girlfriends, boyfriends. You know people who are trying to AI companions. I can't possibly imagine what could go wrong there.

 

Trevor Freeman  42:29

I mean, it's just like, you know, I don't know if this is 15 or 20, or maybe even 25 years ago now, like, it requires a whole new level of understanding when we went from a completely analog world to a digital world and living online, and people, I would hope, to some degree, learned to be skeptical of things on the internet and learned that this is that next level. We now need to learn the right way of interacting with this stuff. And as you mentioned, building the sort of ethical code and ethical guidelines into these language models into the AI. Learning is pretty critical for our listeners. We do have a podcast episode on cybersecurity. I encourage you to go listen to it and reassure yourself that, yes, we are thinking about this stuff. And thanks, Greg, you've given us lots more to think about in that area as well. When it comes to again, looking back at utilities and managing the grid, one thing we're going to see, and we've talked a lot about this on the show, is a lot more distributed generation. So we're, you know, the days of just the central, large scale generation, long transmission lines that being the only generation on the grid. Those days are ending. We're going to see more distributed generations, solar panels on roofs, batteries. How does AI help a utility manage those better, interact with those better get more value out of those things?

 

Greg Lindsay  43:51

I guess that's sort of like an extension of some of the trends I was talking about earlier, which is the notion of, like, being able to model complex systems. I mean, that's effectively it, right, like you've got an increasingly complex grid with complex interplays between it, you know, figuring out how to basically based on real world performance, based on what you're able to determine about where there are correlations and codependencies in the grid, where point where choke points could emerge, where overloading could happen, and then, yeah, basically, sort of building that predictive system to Basically, sort of look for what kind of complex emergent behavior comes out of as you keep adding to it and and, you know, not just, you know, based on, you know, real world behavior, but being able to dial that up to 11, so to speak, and sort of imagine sort of these scenarios, or imagine, you know, what, what sort of long term scenarios look like in terms of, like, what the mix, how the mix changes, how the geography changes, all those sorts of things. So, yeah, I don't know how that plays out in the short term there, but it's this combination, like I'm imagining, you know, all these different components playing SimCity for real, if one will.

 

Trevor Freeman  44:50

And being able to do it millions and millions and millions of times in a row, to learn every possible iteration and every possible thing that might happen. Very cool. Okay. So last kind of area I want to touch on you did mention this at the beginning is the the overall power implications of of AI, of these massive data centers, obviously, at the utility, that's something we are all too keenly aware of. You know, the stat that that I find really interesting is a normal Google Search compared to, let's call it a chat GPT search. That chat GPT search, or decision making, requires 10 times the amount of energy as that just normal, you know, Google Search looking out from a database. Do you see this trend? I don't know if it's a trend. Do you see this continuing like AI is just going to use more power to do its decision making, or will we start to see more efficiencies there? And the data centers will get better at doing what they do with less energy. What is the what does the future look like in that sector?

 

Greg Lindsay  45:55

All the above. It's more, is more, is more! Is the trend, as far as I can see, and every decision maker who's involved in it. And again, Jensen Wong brought this up at the big Nvidia Conference. That basically he sees the only constraint on this continuing is availability of energy supplies keep it going and South by Southwest. And in some other conversations I've had with bandwidth companies, telcos, like laying 20 lumen technologies, United States is laying 20,000 new miles of fiber optic cables. They've bought 10% of Corning's total fiber optic output for the next couple of years. And their customers are the hyperscalers. They're, they're and they're rewiring the grid. That's why, I think it's interesting. This has something, of course, for thinking about utilities, is, you know, the point to point Internet of packet switching and like laying down these big fiber routes, which is why all the big data centers United States, the majority of them, are in north of them are in Northern Virginia, is because it goes back to the network hub there. Well, lumen is now wiring this like basically this giant fabric, this patchwork, which can connect data center to data center, and AI to AI and cloud to cloud, and creating this entirely new environment of how they are all directly connected to each other through some of this dedicated fiber. And so you can see how this whole pattern is changing. And you know, the same people are telling me that, like, yeah, the where they're going to build this fiber, which they wouldn't tell me exactly where, because it's very tradable, proprietary information, but, um, but it's following the energy supplies. It's following the energy corridors to the American Southwest, where there's solar and wind in Texas, where you can get natural gas, where you can get all these things. It will follow there. And I of course, assume the same is true in Canada as we build out our own sovereign data center capacity for this. So even, like deep seek, for example, you know, which is, of course, the hyper efficient Chinese model that spooked the markets back in January. Like, what do you mean? We don't need a trillion dollars in capex? Well, everyone's quite confident, including again, Jensen Wong and everybody else that, yeah, the more efficient models will increase this usage. That Jevons paradox will play out once again, and we'll see ever more of it. To me, the question is, is like as how it changes? And of course, you know, you know, this is a bubble. Let's, let's, let's be clear, data centers are a bubble, just like railroads in 1840 were a bubble. And there will be a bust, like not everyone's investments will pencil out that infrastructure will remain maybe it'll get cheaper. We find new uses for it, but it will, it will eventually bust at some point and that's what, to me, is interesting about like deep seeking, more efficient models. Is who's going to make the wrong investments in the wrong places at the wrong time? But you know, we will see as it gathers force and agents, as I mentioned. You know, they don't require, as much, you know, these monstrous training runs at City sized data centers. You know, meta wanted to spend $200 billion on a single complex, the open AI, Microsoft, Stargate, $500 billion Oracle's. Larry Ellison said that $100 billion is table stakes, which is just crazy to think about. And, you know, he's permitting three nukes on site. So there you go. I mean, it'll be fascinating to see if we have a new generation of private, private generation, right, like, which is like harkening all the way back to, you know, the early electrical grid and companies creating their own power plants on site, kind of stuff. Nicholas Carr wrote a good book about that one, about how we could see from the early electrical grid how the cloud played out. They played out very similarly. The AI cloud seems to be playing out a bit differently. So, so, yeah, I imagine that as well, but, but, yeah, well, inference happen at the edge. We need to have more distributed generation, because you're gonna have AI agents that are going to be spending more time at the point of request, whether that's a laptop or your phone or a light post or your autonomous vehicle, and it's going to need more of that generation and charging at the edge. That, to me, is the really interesting question. Like, you know, when these current generation models hit their limits, and just like with Moore's law, like, you know, you have to figure out other efficiencies in designing chips or designing AIS, how will that change the relationship to the grid? And I don't think anyone knows quite for sure yet, which is why they're just racing to lock up as many long term contracts as they possibly can just get it all, core to the market.

 

Trevor Freeman  49:39

Yeah, it's just another example, something that comes up in a lot of different topics that we cover on this show. Everything, obviously, is always related to the energy transition. But the idea that the energy transition is really it's not just changing fuel sources, like we talked about earlier. It's not just going from internal combustion to a battery. It's rethinking the. Relationship with energy, and it's rethinking how we do things. And, yeah, you bring up, like, more private, massive generation to deal with these things. So really, that whole relationship with energy is on scale to change. Greg, this has been a really interesting conversation. I really appreciate it. Lots to pack into this short bit of time here. We always kind of wrap up our conversations with a series of questions to our guests. So I'm going to fire those at you here. And this first one, I'm sure you've got lots of different examples here, so feel free to give more than one. What is a book that you've read that you think everybody should read?

 

Greg Lindsay  50:35

The first one that comes to mind is actually William Gibson's Neuromancer, which is which gave the world the notion of cyberspace and so many concepts. But I think about it a lot today. William Gibson, Vancouver based author, about how much in that book is something really think about. There is a digital twin in it, an agent called the Dixie flatline. It's like a former program where they cloned a digital twin of him. I've actually met an engineering company, Thornton Thomas Eddie that built a digital twin of one of their former top experts. So like that became real. Of course, the matrix is becoming real the Turing police. Yeah, there's a whole thing in there where there's cops to make sure that AIS don't get smarter. I've been thinking a lot about, do we need Turing police? The EU will probably create them. And so that's something where you know the proof, again, of like science fiction, its ability in world building to really make you think about these implications and help for contingency planning. A lot of foresight experts I work with think about sci fi, and we use sci fi for exactly that reason. So go read some classic cyberpunk, everybody.

 

Trevor Freeman  51:32

Awesome. So same question. But what's a movie or a show that you think everybody should take a look at?

 

Greg Lindsay  51:38

I recently watched the watch the matrix with ideas, which is fun to think about, where the villains are, agents that villains are agents. That's funny how that terms come back around. But the other one was thinking about the New Yorker recently read a piece on global demographics and the fact that, you know, globally, less and less children. And it made several references to Alfonso Quons, Children of Men from 2006 which is, sadly, probably the most prescient film of the 21st Century. Again, a classic to watch, about imagining in a world where we don't where you where you lose faith in the future, what happens, and a world that is not having children as a world that's losing faith in its own future. So that's always haunted me.

 

Trevor Freeman  52:12

It's funny both of those movies. So I've got kids as they get, you know, a little bit older, a little bit older, we start introducing more and more movies. And I've got this list of movies that are just, you know, impactful for my own adolescent years and growing up. And both matrix and Children of Men are on that list of really good movies that I just need my kids to get a little bit older, and then I'm excited to watch with them. If someone offered you a free round trip flight anywhere in the world, where would you go?

 

Greg Lindsay  52:40

I would go to Venice, Italy for the Architecture Biennale, which I will be on a plane in May, going to anyway. And the theme this year is intelligence, artificial, natural and collective. So it should be interesting to see the world's brightest architects. Let's see what we got. But yeah, Venice, every time, my favorite city in the world.

 

Trevor Freeman  52:58

Yeah, it's pretty wonderful. Who is someone that you admire?

 

Greg Lindsay  53:01

Great question. I was thinking. I was thinking about Emory Levin's earlier with this one too. I think about him, because Emery Levin's in, like, energy discourse. Just to be thematic about this is, I think, all the time about his essay from, I think 1976 in foreign affairs, the hard and soft path, I think he called them, which is the idea that, yeah, that in the 70s, before I was born imagining that we could take the soft path of renewables and infinite energy abundance, or we take the hard path of fossil fuels, and we are still taking the hard path globally. It feels like back in the United States, have definitely taken the hard path. So I think about a lot because he was the first one to really think about energy, particularly in the 70s, such a dark decade for energy, from a framing of abundance, and that we got this and, you know, that we simply had to make choices policy and otherwise. And you know, I guess I'm hopeful that we can still make those choices, but, but, yeah, he was such an early and bright voice in this entire discourse.

 

Trevor Freeman  53:52

And finally, what's something about the energy sector or its future that you're really excited about?

 

Greg Lindsay  53:58

Uh, when it comes to energy, I guess I'm really excited. I hadn't thought about it this way, but I guess I'm kind of excited the idea that nuclear is back on the table. I grew up in Illinois, and, like Illinois, I think, is one of the highest state penetrations of nuclear plants. Like nuclear cooling towers were something that I saw growing up. Obviously, you know, nuclear scares people. When you have, you know, industrial accidents that could last a million years. It's kind of scary, but, but, yeah, it's interesting to see that, like all those advances on in theory, thorium reactors and modular reactors are finding purchase with all these tech company hyperscalers that are willing to throw money at the problem. So, so yeah, so I think you know, anything that keeps more coal and natural gas from coming online and fits clean energy clean electrons, let's do it.

 

Trevor Freeman  54:39

Yeah, I totally agree, Greg. Thanks very much for your time. Appreciate it. This has been a great conversation.

 

Greg Lindsay  54:44

Thanks for having a lot of fun!

 

Trevor Freeman  54:46

Awesome. Take care. Thanks for tuning in to another episode of the think energy podcast. Don't forget to subscribe wherever you listen to podcasts, and it would be great if you could leave us a review. It really helps to spread the word. As always, we would love to hear from. You, whether it's feedback comments or an idea for a show or a guest, you can always reach us at [email protected].