loader from loading.io

Cellular balance across the lifespan

Lessons in Lifespan Health

Release Date: 08/30/2022

Improving the health and well-being of family caregivers show art Improving the health and well-being of family caregivers

Lessons in Lifespan Health

Francesca Falzarano is an assistant professor of gerontology at the USC Leonard Davis School. Her research is inspired by her personal experience as a caregiver to her parents and explores how to improve the mental health and well-being of family caregivers, including through the use of technology. On young caregivers “I think right now it's estimated that five and a half million individuals are under the age of 18 are caring for a parent or some family member with chronic illness, mental health issues, dementia-related illnesses, and other age-related impairments. So, this is something...

info_outline
Aging among Black Americans show art Aging among Black Americans

Lessons in Lifespan Health

Lauren Brown is an assistant professor at the USC Leonard Davis School. Her research uses publicly available data to uncover the unique difficulties Black Americans face in maintaining physical and psychological well-being as they age. Her lab both challenges the methods used to study older Black adults and strives to increase diversity in data science research with the goal of increasing the visibility of Black and Brown people via data and storytelling. Quotes from the episode On the role of racism in biomedical and statistical sciences and disease prediction If you think about the...

info_outline
Using dance to ease Parkinson’s symptoms show art Using dance to ease Parkinson’s symptoms

Lessons in Lifespan Health

Patrick Corbin is an associate professor of practice at the USC Gloria Kaufman School and an internationally renowned dance artist whose career has spanned over 30 years and bridged the worlds of classical ballet, modern and contemporary dance. He recently spoke to us about his work, exploring the positive effects that dance can have on neurology. On movement and movement therapy Well, on a neurological level movement is cognition. Movement stimulates cognition.  So that's sort of the sciencey part. The other part is that dance is a multifaceted, multilingual way of movement, and...

info_outline
The effects of exercise on the brain show art The effects of exercise on the brain

Lessons in Lifespan Health

Connie Cortes is an assistant professor of gerontology at the USC Leonard Davis School. Her work straddles the fields of neuroscience and exercise medicine, and she recently spoke to us about her research seeking to understand what is behind the beneficial effects of exercise on the brain with the goal of developing what she calls “exercise in a pill” therapies for cognitive decline associated with aging and neurodegenerative diseases.  On brain plasticity and brain aging Brain plasticity we define as the ability of the brain to adapt to new conditions. And this can be mean...

info_outline
Tips for healthy aging show art Tips for healthy aging

Lessons in Lifespan Health

and instructional associate professor of gerontology at the USC Leonard Davis School, and a specialist in geriatric medicine, joins us for a conversation about healthy aging, including tips on how to keep the body and mind functioning for as long as possible. Quotes from this episode On the importance of setting small goals "People may have all the good intentions, but they might set up goals that are too ambitious and then when they don't reach that goal, they feel frustrated, and they quit… We have to let them understand that goals must be small…So, an apple a day. We have to eat the...

info_outline
Cellular balance across the lifespan show art Cellular balance across the lifespan

Lessons in Lifespan Health

Dion Dickman, associate professor of neuroscience and gerontology, joins George Shannon to discuss how the nervous system processes and stabilizes the transfer of information in healthy brains, aging brains and after injury or disease.  Quotes from the episode: On synaptic plasticity: “Synapses are essential, fundamental units of nervous system function and plasticity is this remarkable ability to change. And throughout early development into maturation and even into old age, synapses just have this amazing resilience to change and adapt to different situations and injury disease,...

info_outline
A balancing act: homestasis under stress show art A balancing act: homestasis under stress

Lessons in Lifespan Health

is a Distinguished Professor of gerontology, molecular and computational biology, and biochemistry and molecular medicine at USC. Over the course of his career, he has played a central role in defining the pathways and mechanisms by which the body is able to maintain balance under stress and in uncovering the role aging plays in disrupting this balancing act. He recently joined Professor George Shannon to discuss his research on how the body is able to maintain balance under stress and the implications it could have for preventing age-related disease and decline.   Quotes from this...

info_outline
Improving health outcomes and quality of life show art Improving health outcomes and quality of life

Lessons in Lifespan Health

is the Mary Pickford Chair in Gerontology and director of the at the USC Leonard Davis School. She's also the co-director of the National Center on Elder Abuse, which is housed at the Keck School of Medicine of USC. She recently spoke to George Shannon about her research, including her work exploring ways to provide long-term care services and supports that allow older adults to be as independent as possible and the challenges and opportunities that technology provides in this area. Quotes from this episode On building on lessons learned during the pandemic “I think a lot of what we saw...

info_outline
Stem cell biology and aging show art Stem cell biology and aging

Lessons in Lifespan Health

Rong Lu is an associate professor of stem cell biology and regenerative medicine, biomedical engineering, medicine, and gerontology at USC. She joins George Shannon to discuss her research into the complex and surprising behavior of individual blood stem cells and what it could mean for treating diseases associated with aging. Quotes from this episode On stem cells and what makes them so promising for medical research Stem cells are the special cells in the body that can produce other type of cells. So in particular there are two type of stem cells, one called embryonic stem cells that only...

info_outline
The intersection between stress and aging show art The intersection between stress and aging

Lessons in Lifespan Health

Assistant Professor of Gerontology joins Professor George Shannon to discuss their research seeking to understand why stress response pathways break down as we grow older and whether there may be ways to delay that breakdown and potentially promote healthier lifespans.    Quotes from this episode On the definition of stress: Stress can come in so many different forms and flavors. It can come in the form of something external, something like heat stress. For example, being out in the desert heat, it can be something as similar to cold stress of a winter storm, or even something like...

info_outline
 
More Episodes

Dion Dickman, associate professor of neuroscience and gerontology, joins George Shannon to discuss how the nervous system processes and stabilizes the transfer of information in healthy brains, aging brains and after injury or disease. 

Quotes from the episode:

On synaptic plasticity:

“Synapses are essential, fundamental units of nervous system function and plasticity is this remarkable ability to change. And throughout early development into maturation and even into old age, synapses just have this amazing resilience to change and adapt to different situations and injury disease, things like that. So synaptic plasticity is really the essence of what it means to grow and mature and change throughout life. Things like learning and memory all depend on changes in synaptic function and structure and it's really a key area of research for many of us.”

 On challenges to maintaining nervous system stability:

“You can imagine in the incredibly complex environment of your brain, where neurons are making synapses with thousands of other neurons, that itself is a big challenge to maintain stability. Sometimes I'm kind of amazed that we don't walk around like raving lunatics half the time and our brains remain stable. When you think of disorders of excitability or stability, things like seizures and various forms of defects in cognition ultimately come down to not being able to stabilize or maintain your neural circuit function. And this really just comes down to normal development that all of your nervous system has to stay stable and your synapses are the key substrates to maintain stability.” 

On the aging brain:

“.. a lot of studies are showing is that this cognitive decline that happens in aging really is ultimately due some sort of a maladaptive reduction in plasticity. And it's kind of amazing, but, young humans, our brains are remarkably plastic and resilient, and that resiliency and plasticity seems to degrade over time and into old age… We think as old age happens .. people's memories start to lapse, even in the absence of any disease, they're not quite as sharp. We think this all ultimately comes down to some limitations imposed on neuroplasticity and that's a major area of the research.

On studying diseases like schizophrenia, which cannot be seen in brain imaging:

“There are no good biomarkers for neuropsychiatric diseases like schizophrenia and bipolar and things like that. So, there are basically two ways to study these kinds of diseases. One is through behavior where you try to get animals to model behaviors that mimic neuropsychiatric diseases. There's some good work happening rodent systems. Although I find it to be honest, very difficult to know whether a mouse is showing the defect in social interaction, for example, that are characteristic of autism or schizophrenia for that matter. So the alternative instead is not to actually model the disease in drosophila or mice, but to take humans in which we can mine their genetics to find genes highly associated with the disease in humans and find out what the fundamental function of these genes are. And that's kind of the strategy that we take.

So we found about 30 genes now that when mutated in drosophila give rise to defects in this process of homeostatic plasticity at synapses, and the vast majority of these genes have links to human diseases that give rise to neuropsychiatric diseases like autism spectrum disorder, schizophrenia, seizure disorders and, bipolar disorder as well. And so I think by understanding the fundamental functions of individual genes, we can extrapolate what might be happening in humans when those genes aren't functioning properly.”

On the importance of sleep:

“…one of the most fascinating questions in neuroscience, or really science more generally is what is the function of sleep? What is the essential function of sleep and what role does synaptic homeostasis and disease play a role in sleep behavior? So, it's quite interesting that almost every neuropsychiatric disease has a sleep disorder associated with it. That's already very interesting. If you look at schizophrenics, their sleep patterns tend to be very fragmented. Whereas people with depression, chronic depression seem to sleep too much, much more than is needed and many neurodegenerative diseases of old age like Parkinson's, and Alzheimer's one of the earliest predictors of these are sleep dysfunction at earlier stages and there's also many studies that have shown that if you treat the sleep dysfunction, you can improve the symptoms of neuropsychiatric disorders. A schizophrenic, for example, might get if you improve their sleep, their symptoms, cognitive symptoms seem to improve children with autism spectrum disorder have, big defects in sleep behavior during development. And it's thought that if you treat the sleep defect, you can improve the phenotypes of autism. So a lot of research seems to be showing that synaptic homeostasis and plasticity and sleep behavior and disease all share really important and synergistic links between them. And I think that really is the major challenge for the future is to understand what happens to synapses during sleep. What happens to synapses during various neuropsychiatric diseases and can this intimate relationship between sleep and, and synaptic plasticity be targeted as a way to improve and treat psychiatric and neurodegenerative diseases.”

On bringing a multidisciplinary approach to research:

This is a big advantage, I think of especially working at USC, in, you know, straddling different schools like Dornsife and gerontology and really being able to throw everything we can in our toolkit at a question or a problem. So, our lab is a drosophila genetics lab. We do neurogenetics. But we do electrophysiology to understand how synapses function we do basic imaging to see synaptic structures and how they work. But we also do a lot of super resolution imaging. Now we've got a super resolution microscope that we've recently purchased that allows us to look at the nano architecture of synapses and how they might change during defects and plasticity and disease. And finally, we're doing things like calcium and voltage imaging to really see the dynamics of how, you know, visualize plasticity happening in real time or dysfunction happening as they go on. So I think having a large toolkit to throw everything we can at a question really lets you see the same problem from many different perspectives.

On the value of basic scientific research:

“Science is for me a curiosity driven process. It's great that there are ramifications to disease and health and humans, but what initially inspired me was just to understand how does nature work and how does the nervous system work. And so I want to just say supporting basic research, basic science, even if it doesn't have any direct implications on disease right away, I think is really important as part of scholarship, as part of what we at the mission of our university, but also just as our world. I think to study basic processes and just understand how nature works and then the applications of them with all evolve. You know CRISPR CAS9, as many of you have probably heard about, all came from basic research and now it is going to revolutionize health and disease.”