Bruno Rossion: Elucidating the Remarkable Ability of the Human Brain to Recognize Faces
Brain Ponderings podcast with Mark Mattson
Release Date: 12/03/2024
Brain Ponderings podcast with Mark Mattson
Dopamine is best known as a neurotransmitter involved in the experiencing of pleasure and reward, and for its role in addiction to drugs, gambling, food, etc. But dopamine is also very important in the brain’s ability to evaluate computational tradeoffs (cost versus benefit) and make decisions. In this episode Roshan Cools a Professor of cognitive neuropsychiatry at Radbout University in the Netherlands talks about how dopamine normally controls the neuronal circuits in the striatum and prefrontal cortex that regulate motivation and cognitive control. By combining PET imaging to...
info_outlineBrain Ponderings podcast with Mark Mattson
In this episode I talk with Professor Maryanne Garry at the University of Waikato New Zealand about several interrelated realms of human cognition that are fundamental to changes in the behaviors of individuals and social groups as influenced by electronic media and artificial intelligence. Dr. Garry has devoted her career to understanding how memories of one’s past experiences can be distorted, how false information can become engrained in one’s system of beliefs. She talks about individual and collective memories, and the brain’s source monitoring systems and how they are...
info_outlineBrain Ponderings podcast with Mark Mattson
It had long been thought that the brain was ‘immunologically privileged’ (physically separated from the immune system). However, this dogma was overturned by a series of discoveries including those made by Professor Michal Schwartz at the Weizmann Institute. In this episode I talk with Michal about the different types of immune cells that are located in ‘immunological niches’ of the brain (choroid plexus, perivascular space, meninges..) and how these cells play critical roles in maintaining normal brain health and function (neurogenesis, synaptic plasticity, learning and memory)....
info_outlineBrain Ponderings podcast with Mark Mattson
Throughout our waking hours neural networks in our brains are processing incoming information, particularly sights and sounds, integrating those inputs with stored information, making decisions, and executing responses. Staying on task requires that we attend to the details of the task while filtering out ‘noise’. In this episode I talk with Diego Mendoza-Halliday at the University of Pittsburgh about visual working memory – what it is, what neuronal circuits are involved, and how it works. His experiments involve recording of neuronal activity in prefrontal cortex and other brain...
info_outlineBrain Ponderings podcast with Mark Mattson
Professor Thomas Hartung has made a major impact in biomedical research by developing and promoting alternatives to animal research. His efforts are leading to more ethical and efficient approaches to basic and applied research in the fields of environmental toxicology, drug development, and neuroscience. In this episode I talk with Thomas about two major flourishing technologies – brain organoids and artificial intelligence – and how they are being rapidly incorporated into both basic and translational research. He provides an historical perspective on the overzealous and...
info_outlineBrain Ponderings podcast with Mark Mattson
Someday it may be possible to restore neuronal networks that have been lost or damaged by brain injury or in neurodegenerative disorders such as Alzheimer’s and Parkinson’s diseases. There are as many astrocytes in the human brain as there are neurons and the astrocytes generally do not die in brain injuries and neurodegenerative disorders. Professor Magdalena Götz has shown that astrocytes can be converted directly into neurons using molecular biology technologies to manipulate a few transcription factors that switch cell fate. These new neurons grow and form synapses with each...
info_outlineBrain Ponderings podcast with Mark Mattson
The Euclidean geometry that we learned in our primary education concerns man-made shapes such as rectangles, triangles, and perfect circles. However the shapes of molecules, cells, and organ systems (and their dynamic changes over time) are more complex. Some biological structures exhibit fractal geometry which is defined as “shapes and patterns that appear similar at different scales” (recursive iteration). Examples of biological structures exhibiting fractal geometry include the branches and roots of trees, blood vessels, lung airways, and the dendritic arbors of neurons. In this episode...
info_outlineBrain Ponderings podcast with Mark Mattson
Polyamines are small organic molecules that are acquired in the diet and can also be synthesized in cells. Spermidine is a polyamine that is increasingly recognized as playing important roles in counteracting aging. Foods with high amounts of spermidine include whole grains, broccoli, and natto (fermented soybeans). Professor Stephan Sigrist at the Free University of Berlin who is widely known for his fundamental contributions to understanding how specific proteins and their interactions control the rapid release and reuptake of neurotransmitters at the presynaptic active zone. In this...
info_outlineBrain Ponderings podcast with Mark Mattson
In the moment most people can readily distinguish between information that is coming into the brain from their senses and what information their brain is generating. However, when recalling information stored in the brain’s neuronal networks the ability to distinguish between what was real and what was imagined becomes more problematic. How does the brain keep track of what we actually experienced in the past and what we imagined happened? In this episode Jon Simons who is Professor of Cognitive Neuroscience at the University of Cambridge talks about his research that is...
info_outlineBrain Ponderings podcast with Mark Mattson
In this episode Emory University and Chinese Academy of Sciences Professor Keqiang Ye talks about his fascinating and ground-breaking trail of discoveries that have revealed previously unknown mechanism responsible for the production and accumulation of damaging fragments of the APP and Tau proteins in Alzheimer’s disease (AD) and the alpha-synuclein protein in Parkinson’s disease (PD). He discovered an enzyme called AEP that cleaves Tau and alpha-synuclein into self-aggregating toxic fragments. Eliminating or disabling AEP can prevent the disease process and preserve brain function...
info_outlineHumans have the amazing ability to instantly recognize the faces of hundreds or even thousands of people they have previously met or seen in pictures or movies. Studies of people with brain injuries that render them incapable of recognizing faces and recordings of neuronal activity in people during face recognition have shown that networks in the occipital and temporal lobes adjacent to the visual cortex mediate facial recognition. Professor Bruno Rossion is at the forefront of research that is revealing the neurophysiological underpinnings of face recognition. By recording and stimulating neurons in the face recognition circuits of numerous research participants Rossion’s laboratory has elucidated how the brain captures and recalls the gestalt of a face without dwelling on specific features of the face.
LINKS:
Review articles on the neurobiology of face recognition:
https://pmc.ncbi.nlm.nih.gov/articles/PMC9954066/pdf/brainsci-13-00354.pdf
https://www.sciencedirect.com/science/article/pii/S0028393224000800?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0149763424000034?via%3Dihub