loader from loading.io

33 October 2019

Getting Personal: Omics of the Heart

Release Date: 10/21/2019

February 2020 show art February 2020

Getting Personal: Omics of the Heart

Jane Ferguson:                  Hi there. Welcome to Getting Personal: Omics of the Heart, the podcast from Circulation: Genomic and Precision Medicine. I'm Jane Ferguson, and this is Episode 36 from February 2020.                                                 First up, we...

info_outline
December 2019 show art December 2019

Getting Personal: Omics of the Heart

Jane Ferguson:                  Hi, everyone. Welcome to episode 35 of Getting Personal: Omics of the Heart, the podcast from Circulation: Genomic and Precision Medicine. I'm Jane Ferguson, an assistant professor of medicine at Vanderbilt University Medical Center, and an associate editor at Circulation: Genomic and Precision Medicine. This episode is first airing in December 2019. Let's see what we published this month. ...

info_outline
34 November 2019 show art 34 November 2019

Getting Personal: Omics of the Heart

Jane Ferguson:                  Hi there. Welcome to the November 2019 issue of Getting Personal: Omics of the Heart. I'm Jane Ferguson. This is your podcast from Circulation: Genomic and Precision Medicine. Let's get started.                                                ...

info_outline
33 October 2019 show art 33 October 2019

Getting Personal: Omics of the Heart

Jane Ferguson:                Hello. Welcome to episode 33 of Getting Personal: Omics Of The Heart, your podcast from Circulation: Genomic and Precision Medicine. I'm Jane Ferguson. This episode is from October 2019. Let's get started.                                            First up is a paper from Sébastien...

info_outline
32 September 2019 show art 32 September 2019

Getting Personal: Omics of the Heart

Jane Ferguson:                Hi, everyone. Welcome to Getting Personal: Omics of the Heart, the monthly podcast from Circulation: Genomic and Precision Medicine. I'm Jane Ferguson, an assistant professor of medicine at Vanderbilt University Medical Center and an associate editor at CircGen. This is episode 32 from September 2019. Starting off this month, we have a paper on Genetic Mosaicism in Calmodulinopathy brought to us by Lisa Wren, Alfred George and colleagues from Northwestern University. They were interested in...

info_outline
27 August 2019 show art 27 August 2019

Getting Personal: Omics of the Heart

Jane Ferguson:                Hello, and welcome to Getting Personal, Omics of the Heart, your monthly podcast from Circulation: Genomic and Precision Medicine. I'm Jane Ferguson. It is August, 2019, and this is episode 31. Let's get started.                                            Our first paper comes from...

info_outline
30 July 2019 show art 30 July 2019

Getting Personal: Omics of the Heart

Jane Ferguson:                Hi everyone. Welcome to Getting Personal: Omics of the Heart, the podcast from Circulation: Genomic and Precision Medicine. I'm Jane Ferguson and this is episode 30 from July 2019.                                            First up we have a paper, the Subtype Specificity of Genetic...

info_outline
29 June 2019 show art 29 June 2019

Getting Personal: Omics of the Heart

Jane Ferguson:                Hi, everyone. Welcome to episode 29 of Getting Personal: Omics of the Heart, the podcast from Circulation: Genomic and Precision Medicine. I'm Jane Ferguson from Vanderbilt University Medical Center and an associate editor at Circ: Genomic and Precision Medicine. Let's dive in and see what's new in the June issue. ...

info_outline
28 May 2019 show art 28 May 2019

Getting Personal: Omics of the Heart

Jane Ferguson:  Hi, everyone. Welcome to Getting Personal: Omics of the Heart, the podcast from Circulation: Genomic and Precision Medicine. It's May 2019, and this is episode 28. So let's see what papers we have in the journal this month.                              First up, a paper from Mengyao Yu, Nabila Bouatia-Naji and colleagues from the Inserm Cardiovascular Research Center in Paris, entitled GWAS-Driven Gene-set Analyses, Genetic and...

info_outline
27 April 2019 show art 27 April 2019

Getting Personal: Omics of the Heart

Jane Ferguson:                Hello and welcome to Getting Personal: Omics of the Heart, your podcast from Circulation: Genomic and Precision Medicine. I'm Jane Ferguson from Vanderbilt University Medical Center, and this is episode 27 from April 2019.                                            This month, I talk...

info_outline
 
More Episodes

Jane Ferguson:                Hello. Welcome to episode 33 of Getting Personal: Omics Of The Heart, your podcast from Circulation: Genomic and Precision Medicine. I'm Jane Ferguson. This episode is from October 2019. Let's get started.

                                           First up is a paper from Sébastien Thériault, Yohan Bossé, Jean-Jacques Schott and colleagues from Laval University, Quebec and INSERM in Mont. They published on genetic association analyses, highlight IL6, ALPL and NAV1 as three new susceptibility genes underlying Calcific Aortic Valve Stenosis.

                                           In this paper, they were interested in finding out whether they could identify novel susceptibility genes for Calcific Aortic Valve Stenosis, or CAVS, which is a severe and often fatal condition with limited treatment options other than surgical aortic valve replacement. They conducted a GWAS meta-analysis across four European ancestry cohorts comprising over 5,000 cases and over 354,000 controls. They identified four loci at genome-wide significance, including two known loci in LPA and PALMD as well as two novel loci, IL6 which encodes the interleukin six cytokine, and ALPL, which encodes an alkaline phosphatase. They then integrated transcriptomic data from 233 human aortic valves to conduct the transcriptome wide association study and find an additional risk locus associated with higher expression of NAV1 encoding neuron navigator one. Through fine mapping, integrating conservation scores, and methylation peaks, they narrowed down the putative causal variants at each locus identifying one snip in each of PALMD and IL6 as likely causal in addition to two candidates snips at ALPL and three plausible candidate snips in NAV1.

                                           Phenome-Wide Association Analysis, or PheWAS of the top candidate functional snips found that the IL6 risk variant associated with higher eosinophil count, pulse pressure and systolic blood pressure. Overall, this study was able to identify novel loci associated with CAVS potentially implicating inflammation and hypertension in CAVS etiology. Additional functional studies are required to further explore these potential mechanisms.

                                           Next up is a paper from Elisavet Fotiou, Bernard Keavney and colleagues from the University of Manchester. Their paper entitled Integration of Large-Scale Genomic Data Sources With Evolutionary History Reveals Novel Genetic Loci for Congenital Heart Disease explored the genetic etiology of sporadic non syndromic congenital heart disease using an evolution informed approach. Ohnologs are related genes that have been retained following ancestral whole genome duplication events which occurred around 500 million years ago. The authors hypothesized that ohnologs which were retained versus duplicated genes that were lost were likely to have been under greater evolutionary pressure due to the need to maintain consistent gene dosage. For example, as could occur when the resulting proteins form complexes that require stochiometric balance.

                                           Thus, ohnologs may be enriched for genes that are sensitive to dosage. The group analyzed copy number variant data from over 4,600 non syndromic coronary heart disease patients as well as whole exome sequence data from 829 cases of Tetralogy of Fallot. Compared to control data obtained from public databases, there was evidence for significant enrichment in CHD associated variants in ohnologs but not in other duplicated genes arising from small scale duplications. Through this and various other filtering steps to prioritize likely variants, the group was able to identify 54 novel candidate genes for congenital CHD highlighting the utility of considering the evolutionary origin of genes in the search for disease relevant biology.

                                           Next, we have a clinical letter entitled Pathological Overlap of Arrhythmogenic Right Ventricular Cardiomyopathy and Cardiac Sarcoidosis from Ashwini Kerkar, Victoria Parikh and colleagues at Stanford University. They describe a case of a 50 year old woman previously healthy and a long distance runner who presented with tachycardia. She was found to have normal left ventricular size but severe right ventricular enlargement and systolic dysfunction. Genetic testing using an Arrhythmogenic Right Ventricular Cardiomyopathy or ARVC panel identified a variant in DSG2. through cascade testing it was found that two of the patient's three children also carried this variant. The patient experienced worsening RV failure and subsequently underwent heart transplantation at age 55. Pathology of the heart showed evidence of cardiac sarcoidosis. There have been some previous reports of overlap in ARVC and cardiac sarcoid pathology but not in cases with a high confidence genetic diagnosis such as this one.

                                           This case raises the possibility of shared disease mechanisms underlying ARVC and cardiac sarcoidosis and suggests that therapies aimed at immune modulation may also have utility in ARVC. However, further work is required to test this hypothesis. Our next paper is a perspective piece from Babken Asatryan and Helga Servatius from Bern University Hospital. In Revisiting the Approach to Diagnosis of Arrhythmogenic Cardiomyopathy: Stick to the Arrhythmia Criterion!, they outline the challenges in defining diagnostic criteria for a Arrhythmogenic Right Ventricular Cardiomyopathy or ARVC, given the variable presentation of the disease. Given recent advances in knowledge, particularly in recognizing disease overlap with Arrhythmogenic Left Ventricular Cardiomyopathy or ALVC and Biventricular Arrhythmogenic Cardiomyopathy, a new clinical perspective was warranted. The Heart Rhythm Society updated their recommendations this year to introduce a new umbrella term that better encompasses the spectrum of disease, Arrhythmogenic Cardiomyopathy or ACM. This recommends the arrhythmia criterion Should be used as a first line screening criteria for ACM.

                                           This is a broad criteria and a definitive diagnosis of ACM requires exclusion of systemic disorders such as sarcoidosis, amyloidosis, mild carditis, Chagas disease, and other cardiomyopathies. Implementation of this new approach to diagnosis may require more extensive investigation of arrhythmias including the use of ambulatory ECG monitors or cardiac loop recorders. These changes may also affect who's referred for genetic testing, potentially shifting diagnoses towards genotype rather than phenotype based disease classifications. Despite challenges and adopting new approaches, it is hoped that these changes will ultimately serve to improve risk stratification and allow for improved disease management and intervention to prevent sudden cardiac death.

                                           We end with a scientific statement chaired by Sharon Cresci and co-chaired by Naveen Pereira with a writing group representing the AHA Councils on Genomic and Precision Medicine, Cardiovascular and Stroke Nursing and Quality of Care and Outcomes Research entitled Heart Failure in the Era of Precision Medicine: A Scientific Statement From the American Heart Association. This paper provides a comprehensive overview of the current state of omics technologies as they relate to the development and progression of heart failure and considers the current and potential future applications of these high throughput data for precision medicine with respect to prevention, diagnosis and therapy of heart failure. They discuss advances in genomics, pharmacogenomics, epigenomics, proteomics, metabolomics, and the microbiome, and integrate the findings from this rapidly developing field as they pertain to new methods to diagnose, treat, and prevent heart failure.

                                           And that's it for October. I hope to see many of you at AHA Scientific Sessions in Philadelphia in November and look forward to bringing you more of the best new science next month. Thanks for listening. This podcast was brought to you by Circulation: Genomic and Precision Medicine and the American Heart Association Council on Genomic and Precision Medicine. This program is copyright American Heart Association 2019.