Data Skeptic
In this episode, Kyle does an overview of the intersection of graph theory and computational complexity theory. In complexity theory, we are about the runtime of an algorithm based on its input size. For many graph problems, the interesting questions we want to ask take longer and longer to answer! This episode provides the fundamental vocabulary and signposts along the path of exploring the intersection of graph theory and computational complexity theory.
info_outlineData Skeptic
In this episode, listeners will learn about Actantial Networks—graph-based representations of narratives where nodes are actors (such as people, institutions, or abstract entities) and edges represent the actions or relationships between them. The one who will present these networks is our guest Armin Pournaki, a joint PhD candidate at the Max Planck Institute for Mathematics in the Sciences and the Laboratoire Lattice (ENS-PSL), who specializes in computational social science, where he develops methods to extract and analyze political narratives using natural language processing and...
info_outlineData Skeptic
How to build artificial intelligence systems that understand cause and effect, moving beyond simple correlations? As we all know, correlation is not causation. "Spurious correlations" can show, for example, how rising ice cream sales might statistically link to more drownings, not because one causes the other, but due to an unobserved common cause like warm weather. Our guest, Utkarshani Jaimini, a researcher from the University of South Carolina's Artificial Intelligence Institute, tries to tackle this problem by using knowledge graphs that incorporate domain expertise. Knowledge graphs...
info_outlineData Skeptic
info_outlineData Skeptic
info_outlineData Skeptic
In this episode we talk with Manita Pote, a PhD student at Indiana University Bloomington, specializing in online trust and safety, with a focus on detecting coordinated manipulation campaigns on social media. Key insights include how coordinated reply attacks target influential figures like journalists and politicians, how machine learning models can detect these inauthentic campaigns using structural and behavioral features, and how deletion patterns reveal efforts to evade moderation or manipulate engagement metrics. Follow our guest Papers in focus
info_outlineData Skeptic
Kyle discusses the history and proof for the small world hypothesis.
info_outlineData Skeptic
Kyle asks Asaf questions about the new network science course he is now teaching. The conversation delves into topics such as contact tracing, tools for analyzing networks, example use cases, and the importance of thinking in networks.
info_outlineData Skeptic
In this episode we talk with Bavo DC Campo, a data scientist and statistician, who shares his expertise on the intersection of actuarial science, fraud detection, and social network analytics. Together we will learn how to use graphs to fight against insurance fraud by uncovering hidden connections between fraudulent claims and bad actors. Key insights include how social network analytics can detect fraud rings by mapping relationships between policyholders, claims, and service providers, and how the BiRank algorithm, inspired by Google’s PageRank, helps rank suspicious claims based on...
info_outlineData Skeptic
In this episode we talk with Justin Wang Ngai Yeung, a PhD candidate at the Network Science Institute at Northeastern University in London, who explores how network science helps uncover criminal networks. Justin is also a member of the organizing committee of the satellite conference dealing with criminal networks at the network science conference in The Netherlands in June 2025. Listeners will learn how graph-based models assist law enforcement in analyzing missing data, identifying key figures in criminal organizations, and improving intervention strategies. Key insights include the...
info_outlineIn this episode today’s guest is Celine Wüst, a master’s student at ETH Zurich specializing in secure and reliable systems, shares her work on automated software testing for graph databases. Celine shows how fuzzing—the process of automatically generating complex queries—helps uncover hidden bugs in graph database management systems like Neo4j, FalconDB, and Apache AGE.
Key insights include how state-aware query generation can detect critical issues like buffer overflows and crashes, the challenges of debugging complex database behaviors, and the importance of security-focused software testing.
We'll also find out which Graph DB company offers swag for finding bugs in its software and get Celine's advice about which graph DB to use.
-------------------------------
Want to listen ad-free? Try our Graphs Course? Join Data Skeptic+ for $5 / month of $50 / year