#4.2 Autonomie des utilisateurs, qui n'en veut ?
Decideo - Data Science, Big Data, Intelligence Augmentée
Release Date: 01/09/2024
Decideo - Data Science, Big Data, Intelligence Augmentée
Un « nouveau » paradigme apparait, le SaaS ! Non, pas celui que vous croyez ! Vous vous dites, ça y est, on l’a perdu ! Il est resté en 1999 à la création de Salesforce ! Non, car si le SaaS est bien vivant depuis 25 ans, le nouveau SaaS pointerait le bout de son nez selon les oracles du marketing. Nous serions en train de passer du Software as a Service au Service as a Software. Que c’est beau le monde du marketing ! Allez, je vous explique. Le principe du Software as a Service a combiné depuis plus de deux décennies l’évolution...
info_outline #5.4 Jean-Georges Perrin, Pape du Data Mesh et des Data ContractsDecideo - Data Science, Big Data, Intelligence Augmentée
Dans cet épisode, nous recevons Jean-Georges Perrin. Ce nom ne peut vous être inconnu si vous vous intéressé au "shift-left" qui émerge dans le monde des données. Les utilisateurs prennent peu à peu le contrôle de leurs données, et cela a été théorisé en 2020 dans un livre développant le concept de Data Mesh. Au Data Mesh, il manquait une dimension, celle du "comment". Jean-Georges Perrin a été un des premiers à mettre en application ce concept, chez Paypal. Et parmi les premiers, avec Andrew Jones, à s'intéresser aux supports du Data Mesh, les Data Contracts. Au point qu'il...
info_outline #5.3 Cartographie des données et des systèmes avec David Bougearel de CartographitDecideo - Data Science, Big Data, Intelligence Augmentée
Dans cet épisode, nous recevons David Bougearel, fondateur de Cartographit, un nouvel outil de cartographie du système d'information, qui s'appuie sur les normes de cartographie de l'ANSSI. Les différentes couches cartographiées incluent donc les couches des données, des processus et des applications. Cela fait-il de Cartographit un outil potentiel de gouvernance des données ? Nous abordons ce sujet et différentes questions connexes. - La cartographie du Système d'Information (SI) offre une vue d'ensemble, un inventaire global du SI, incluant les données (objets d'information)....
info_outline #5.2 IA ? Et si nous parlions français !Decideo - Data Science, Big Data, Intelligence Augmentée
Vous en avez assez d’entendre parler de LLM, de prompt, de text token, ou de adversarial machine learning ? Ça tombe bien, le 6 septembre dernier, le Journal Officiel de la République Française a publié, pour la rentrée des classes, la liste relative au vocabulaire de l’intelligence artificielle. La commission d’enrichissement de la langue française a retenu quatorze termes ; elle les a traduits, et définit. Ainsi, vous pourrez parler de Grands Modèles de Langage, les GML ; d’instructions génératives pour les prompts, de jeton textuel pour les text...
info_outline #5.1 Le MIT classe 777 risques potentiels liés à l'IADecideo - Data Science, Big Data, Intelligence Augmentée
Le MIT a recensé 777 risques potentiels liés à l’IA dans une base de données partagée gratuitement Cet été, le MIT nous a fait un cadeau ! Le prestigieux organisme de recherche américain a publié un référentiel complet des risques liés à l’intelligence artificielle. L’objectif : vous aider à cartographier l’ensemble des risques qui pèsent sur votre entreprise afin de les mesurer, les quantifier et les mitiger par la suite. Si vous suivez mes contenus sur le thème de la gouvernance des données et de l’intelligence artificielle, vous avez déjà été...
info_outline #4.24 Gagner aux JO, est-ce une question de data ?Decideo - Data Science, Big Data, Intelligence Augmentée
Vous avez 23 ans, vous mesurez 1 mètre 77, et vous pesez 72 kilos ? Vous avez, contrairement à moi, le profil idéal pour remporter le 100 mètres, épreuve reine de l’athlétisme aux jeux olympiques. Si en revanche vous avez plus de 27 ans… désolé, vous êtes déjà disqualifié par l’analyse statistique. Cependant, si vous êtes un peu en surpoids, jusqu’à 108 kilos, vous pouvez tenter le lancer de poids. Les grands triompheront au lancer de disque, quant aux plus petits qu’un mètre soixante… ils n’ont que peu de chance d’obtenir une médaille en athlétisme. Non,...
info_outline #4.23 Gouvernance des données orientée métier, quelques prérequisDecideo - Data Science, Big Data, Intelligence Augmentée
Gouvernance des données : quelques prérequis organisationnels Ayant l’opportunité d’accompagner de nombreuses entreprises dans la mise en place d’une gouvernance des données orientée métier, je voudrais partager avec vous aujourd’hui quelques prérequis organisationnels. Eloignés des habituels conseils sur les outils à déployer, je constate que les premiers pas à réaliser, et pas les plus faciles, sont liés aux personnes et à l’organisation. Trois questions ! Qui ? Cela peut paraitre évident, mais dans la réalité, la nomination claire et affirmée de la...
info_outline #4.22 La donnée sous tous les angles, avec Philippe Charpentier, CTO de NetAppDecideo - Data Science, Big Data, Intelligence Augmentée
Avec Philippe Charpentier, le CTO de NetApp France, nous abordons le "contenant" des données. Contenant et contenu sont mutuellement indispensables, et ils répondent tous deux à des contraintes différentes : - Les data sont enfin reconnues comme des actifs informationnelles de l'entreprise, il faut donc les protéger. Quels sont les enjeux actuels liés à la sécurité et à la confidentialité de ces données collectées par toutes les entreprises ? - Peut-on et doit-on tout conserver ? L'IA semble nous dire que oui, les lois sont un peu moins d'accord. Comment arbitrer ? - Un des...
info_outline #4.21 IBM se lance dans le data mesh avec Data Product HubDecideo - Data Science, Big Data, Intelligence Augmentée
IBM se lance à son tour dans le data mesh et les data products. L’entreprise l’a annoncé cette semaine, à l’occasion d’un séminaire de présentation de son offre appelée IBM Data Product Hub. Cette tendance, le « shift left », consiste à transférer peu à peu la responsabilité des data aux utilisateurs métiers, et l’autonomie qui va avec. Que vous appliquiez à la lettre les principes du data mesh ou si vous créez simplement des data products pour remplacer vos entrepôts de données centralisés, vous allez passer par la recherche et l’installation d’une...
info_outline #4.20 Cinq ans de prison, si vous tentez de prévoir les décisions d'un jugeDecideo - Data Science, Big Data, Intelligence Augmentée
5 ans de prison, si vous tentez de prévoir la décision d’un juge … mais comme toujours, les lignes jaunes sont contournables, pour peu que l’on prenne le temps de comprendre la loi. Je vous parle ici d’une disposition liée à l’utilisation de l’intelligence artificielle dans le cadre de procédures judiciaires, tentant de prédire quel sera le comportement de tel ou tel juge dans une affaire, et pour les parties prenantes d’adapter leur stratégie. Aux Etats-Unis, vous l’avez certainement vu dans de nombreuses séries criminelles, la technologie est utilisée pour analyser...
info_outlineDepuis que je présente dans mes formations les concepts liés à une gouvernance des données orientée métiers, basée sur une répartition nouvelle des responsabilités entre l’informatique et les métiers, je ne cesse de répéter que les utilisateurs de 2024 veulent plus d’autonomie (en 2025 sans doute passeront-ils du “je souhaite”, à “je veux”), et moins dépendre d’un département informatique ou d’un département data pour manipuler cette matière première qu’ils maitrisent parfaitement
Libérer pour attirer et conserver
L’autonomisation des utilisateurs serait même une des clefs pour raviver l’engagement des jeunes générations, nouvelles arrivées dans le monde de l’entreprise. “Il importe aujourd’hui de s’interroger sur la manière de rendre le travail attractif pour que chacun ait le sentiment que son travail compte”, explique Pascale Griet dans son livre La Grande Impatience (Hermann Editeurs, 2023). “Valoriser le travail, c’est à la fois valoriser la contribution individuelle, et faire en sorte que chaque voix contribue effectivement à cette oeuvre collective”, explique-t-elle en parlant du sens à donner à l’entreprise.
Autonomie d’accord, mais tout le monde est-il prêt ? Certes non ! Et mes dernières missions m’ont amené à rencontrer un assureur mutualiste, un département français, une administration sociale… dans lesquels manifestement, l’autonomie n’est pas le souhait de tous, en particulier au niveau de la direction. Y parvenir c’est “libérer” l’entreprise. Isaac Getz, dans son livre Liberté & Cie (Flammarion, 2009), définit l’entreprise libérée “lorsque la majorité des salariés disposent de la liberté et de l’entière responsabilité d’entreprendre toute action qu’eux-mêmes estiment comme étant la meilleure pour la vision de l’entreprise”.
Une libération qui passe par les données
De quoi parle-t-on si l’on applique ces idées au monde de la donnée ? En résumé de l’idée que les métiers peuvent, et souhaitent, prendre en main leurs données (dans un cadre de gouvernance global à respecter impérativement), tout comme les générations précédentes ont pris leur autonomie dans l’usage du téléphone, du mail, de Powerpoint ou de Word. Utiliser un outil tel que Tableau ou PowerBI n’est pas hors de portée d’un trentenaire qui a utilisé un ordinateur pendant une bonne partie de ses études. Et dépendre d’un service informatique ou d’un service “data” pour requêter, analyser et comprendre ses données, lui semble totalement anachronique. Il faut donc répondre positivement à ce besoin justifié d’autonomie. Les “data products” ont été conçus pour cela.
Mais d’un autre côté, certains ne sont pas prêts ! Les vieux allez vous me dire ? Oui, mais ils peuvent être vieux dans leurs têtes sans ce que cela ne reflète leur état-civil. Certains n’ont pas la maturité pour prendre cette autonomie. Et parfois c’est la culture de leur organisation qui les a freiné. Doit-on les embarquer de force ? Cela ne fonctionnera pas. Doit-on les convaincre ? Ce serait idéal, mais certains resteront inflexibles. Doit-on rejeter l’autonomie aux autres pour satisfaire les moins agiles ? On risque alors de perdre les meilleurs éléments.
Il faut donc mettre en place une transition progressive. Développer des data products pour permettre aux couples producteurs - consommateurs de bénéficier de cette nouvelle autonomie (dans un cadre de gouvernance strict, je le répète); mais maintenir un architecture centralisée “à l’ancienne” pour servir les données traditionnelles. Ainsi les plus agiles pourront montrer aux plus réticents les bénéfices de la nouvelle organisation; peut-être les convaincre; et finalement permettre dans plusieurs mois ou années le décommissionnement de l’ancien système.
Ce n’est finalement pas pour rien, si le mot “autonomy” apparait 54 fois dans le livre de Andrew Johns sur les Data Contracts…