Lessons in Lifespan Health
is an author, coach and teacher who leads a yoga class at the USC Leonard Davis School. He joined us to talk about his book, The Art of Conscious Aging and how to redefine yourself and find fulfillment as you age. Transcript I hear all the time, I used to do yoga, but now my body doesn't like it. Well, find a new yoga class. If you remember how it made you feel, then doing it in a new way, maybe a gentler class, maybe a hot yoga class that's in the dark, that's slow, where you hold the poses and no one's looking at you because you may be self-conscious, maybe that's the...
info_outline Studying how the brain’s blood vessels affect cognitive healthLessons in Lifespan Health
Dan Nation is a professor of gerontology and medicine at USC. His research focuses on vascular factors in the brain and how they affect memory decline and dementia in older adults. He joined us to talk about studying blood vessels in the brain to identify early signs of dementia and potential therapies to treat it. Transcript Speaker 1 (): The variability in your blood pressure day to day, month to month, year to year, and sometimes even beat to beat–the variability in your blood pressure is predictive of dementia risk. So higher levels of blood pressure variability are bad, even if you have...
info_outline Deprescribing and medication management for older adultsLessons in Lifespan Health
Michelle Keller is an assistant professor of gerontology and the Leonard and Sophie Davis Early Career Chair in Minority Aging at the USC Leonard Davis School. She spoke to us about her research focused on improving patient-clinician communication, medication management, and the identification of dementia in minority older adults. Here are highlights from our conversation. On polypharmacy “When it comes to older adults and medications, it's important to understand that while medications can be incredibly beneficial for treating various conditions, they can also present really unique risks in...
info_outline Improving the health and well-being of family caregiversLessons in Lifespan Health
Francesca Falzarano is an assistant professor of gerontology at the USC Leonard Davis School. Her research is inspired by her personal experience as a caregiver to her parents and explores how to improve the mental health and well-being of family caregivers, including through the use of technology. On young caregivers “I think right now it's estimated that five and a half million individuals are under the age of 18 are caring for a parent or some family member with chronic illness, mental health issues, dementia-related illnesses, and other age-related impairments. So, this is something...
info_outline Aging among Black AmericansLessons in Lifespan Health
Lauren Brown is an assistant professor at the USC Leonard Davis School. Her research uses publicly available data to uncover the unique difficulties Black Americans face in maintaining physical and psychological well-being as they age. Her lab both challenges the methods used to study older Black adults and strives to increase diversity in data science research with the goal of increasing the visibility of Black and Brown people via data and storytelling. Quotes from the episode On the role of racism in biomedical and statistical sciences and disease prediction If you think about the...
info_outline Using dance to ease Parkinson’s symptomsLessons in Lifespan Health
Patrick Corbin is an associate professor of practice at the USC Gloria Kaufman School and an internationally renowned dance artist whose career has spanned over 30 years and bridged the worlds of classical ballet, modern and contemporary dance. He recently spoke to us about his work, exploring the positive effects that dance can have on neurology. On movement and movement therapy Well, on a neurological level movement is cognition. Movement stimulates cognition. So that's sort of the sciencey part. The other part is that dance is a multifaceted, multilingual way of movement, and...
info_outline The effects of exercise on the brainLessons in Lifespan Health
Connie Cortes is an assistant professor of gerontology at the USC Leonard Davis School. Her work straddles the fields of neuroscience and exercise medicine, and she recently spoke to us about her research seeking to understand what is behind the beneficial effects of exercise on the brain with the goal of developing what she calls “exercise in a pill” therapies for cognitive decline associated with aging and neurodegenerative diseases. On brain plasticity and brain aging Brain plasticity we define as the ability of the brain to adapt to new conditions. And this can be mean...
info_outline Tips for healthy agingLessons in Lifespan Health
and instructional associate professor of gerontology at the USC Leonard Davis School, and a specialist in geriatric medicine, joins us for a conversation about healthy aging, including tips on how to keep the body and mind functioning for as long as possible. Quotes from this episode On the importance of setting small goals "People may have all the good intentions, but they might set up goals that are too ambitious and then when they don't reach that goal, they feel frustrated, and they quit… We have to let them understand that goals must be small…So, an apple a day. We have to eat the...
info_outline Cellular balance across the lifespanLessons in Lifespan Health
Dion Dickman, associate professor of neuroscience and gerontology, joins George Shannon to discuss how the nervous system processes and stabilizes the transfer of information in healthy brains, aging brains and after injury or disease. Quotes from the episode: On synaptic plasticity: “Synapses are essential, fundamental units of nervous system function and plasticity is this remarkable ability to change. And throughout early development into maturation and even into old age, synapses just have this amazing resilience to change and adapt to different situations and injury disease,...
info_outline A balancing act: homestasis under stressLessons in Lifespan Health
is a Distinguished Professor of gerontology, molecular and computational biology, and biochemistry and molecular medicine at USC. Over the course of his career, he has played a central role in defining the pathways and mechanisms by which the body is able to maintain balance under stress and in uncovering the role aging plays in disrupting this balancing act. He recently joined Professor George Shannon to discuss his research on how the body is able to maintain balance under stress and the implications it could have for preventing age-related disease and decline. Quotes from this...
info_outlineKelvin Davies is a Distinguished Professor of gerontology, molecular and computational biology, and biochemistry and molecular medicine at USC. Over the course of his career, he has played a central role in defining the pathways and mechanisms by which the body is able to maintain balance under stress and in uncovering the role aging plays in disrupting this balancing act. He recently joined Professor George Shannon to discuss his research on how the body is able to maintain balance under stress and the implications it could have for preventing age-related disease and decline.
Quotes from this episode
On the concept of adaptive homeostasis
“So every organism that we've looked at is able to adapt to stress. And I'm talking not about psychological adaptation, but adaptation at a cellular or molecular level. And we've been working on what are the pathways which that adaptation occurs. And what we came up with over a series of a number of years is the concept of adaptive homeostasis.
“What we found with adaptation is that successful adaptation actually involves the turn-on of a number of genes, a key one being something called NRF2. And NRF is a sort of a master regulator that turns on about another 200 genes. When I say ‘turn on,’ what I mean is that those genes start making their protein products. So the code in that gene starts being read, turned into a protein product. Thousands of proteins are then made. Many of them at least are enzymes that have a job to do. And all of those enzymes have a role in enabling you to adapt.”
On adaptive homeostasis and aging
“As organisms age, the capacity for adaptive homeostasis declines. That's been true in everything we've looked at all the way from bacteria to yeast, to worms, to flies, to mice.
“NRF2 activity is modified in aging. And so it doesn't work as well … And the reason we think that happens is that there's another gene that's turned on in aging that inhibits NRF2 responsiveness. It turns out that that gene might actually be helping to protect you against cancer. So one of the things that cancer cells are very good at is avoiding stress and adapting to stress. And in fact, NRF2 works really, really well in most cancer cells, better than in normal cells. So it looks as if the body is adapting to age by inhibiting its own NRF2 thus decreasing adaptive homeostasis in order to diminish the increase in cancer. We all know that cancer increases with age. Maybe it would increase twice as much if you didn't have this offset by inhibiting NRF2 in the cancer cells. And the price you pay is that you're also inhibiting NRF2 in your normal cells at the same time.”
On understanding the role of enzymes and backup systems
“What we've learned over the years is that the body treats important enzymes much more like the way that NASA treats important components in a space shuttle. In other words, if something is important, let's have a backup to it. And if it's really important, let's have a backup to the backup. And if it's life-threatening, let's have a backup to the backup to the backup. And the problem is when you knock out one enzyme if you don't know if there's a backup enzyme to that one, then, and that takes over, then you'll completely mask the effects you're seeing.
“We had a great example of that in my lab several years ago where we found an enzyme that was induced during chemical stresses that stopped DNA being read. So basically protein RNA synthesis and protein synthesis were stopped by this particular enzyme that got turned on during stress situations. If you inhibited that enzyme, it didn't make any difference because there was a backup to that enzyme. And if you inhibited the backup, it didn't make any difference either because there was a backup to the backup. So it turned out what was really important in cells is that if you're being stressed to the point where it could be lethal for that cell, all of these things will get turned on simultaneously and any one of them can do the job. You're willing to spend the extra chemical energy, so to speak, to turn all of them on to make sure that you don't die from the stress. So that, that's why I think just looking at one enzyme or another is not the way to go. And I think most people would follow that ethos today.”
On the role of sex in the adaptive response
“What we found is that the females adapt better than males. Females generally lose less of their adaptive homeotic capacity with age than do males. So sorry, men we’re losing out there. And also curiously, and this we don't understand, female flies responded to certain oxidants very well and others less well and males responded differently to different oxidants than did females. So there were some oxidants to which males responded relatively well [and] females didn't respond well and vice versa. This is sort of the power of molecular biology.
“These days, we are able to do experiments with flies, where you can switch the sex of a fly from male to female or female to male. We wanted to do that basically to see whether or not we were right about the maleness or femaleness of the adaptive response. And it turns out when you switch a male fly to a pseudo female or a female to a pseudo male, genetically, they exactly switch their adaptive homeostatic capacities to the new sex.”
On future research directions
“So everything basically in physiology is explained by homeostasis, but the homeostatic range is flexible and you can change it by training and by doing various other things. I think what we're seeing is the beginning of understanding how that process kicks off, or those kinds of processes kick-off, how they begin that involves NRF2 and similar enzymes and similar genes. But then after the initial response, if you're looking at a long-term adaptive response, that's a whole different set of genes and set of proteins that are involved that we're only at the very, very beginning of understanding I would say.”
On the importance of being a mentor
“If you're going to be an educator or a professor, it should be a major part of what you do. I've been fortunate enough to receive several mentoring awards, and I'm very proud of them. And I think they're some of the most important work that I've done.
“Over 30 postdocs have gone through my lab over the years and a similar number of PhD students have done their PhDs in my lab. Many of them have gone through and done their work very well. And, and we've said goodbye, and I see them occasionally and others of them are family members … They are literally a part of Joanna, my wife and I, my family; we see them all the time. We are very close to many of them and follow their careers and have had relationships with some for over 30 years. It's a really a joy in terms of some of the best aspects of being a university professor. I think it's one of the things I've enjoyed most, I must say. And hopefully I've been able to be of some help some of those people over the years and to occasionally steer them in the right direction.”