loader from loading.io

Discovering Fossilized Microbes in Antarctic Ice Cores With Manuel Martinez Garcia

Meet The Microbiologist

Release Date: 03/14/2025

Discovering Fossilized Microbes in Antarctic Ice Cores With Manuel Martinez Garcia show art Discovering Fossilized Microbes in Antarctic Ice Cores With Manuel Martinez Garcia

Meet The Microbiologist

Manuel Martinez Garcia, Ph.D., a professor of microbiology in the Physiology, Genetics and Microbiology Department at the University of Alicante in Spain, paints a picture of what microbial life looked like thousands of years ago by analyzing microbial genomic signatures within ice cores collected from the Antarctic ice shelves in the 1990s.  Links for the Episode  – mSphere paper.  – Nature communications article.    – Press Release from Alfred Wegener Institute. Take the  Watch this episode:  Ashley’s Biggest Takeaways There is a unique...

info_outline
Revenge of the Microbes With Brenda Wilson and Brian Ho show art Revenge of the Microbes With Brenda Wilson and Brian Ho

Meet The Microbiologist

Episode Summary Mother-Son duo, Brenda Wilson, Ph.D., professor of microbiology and the Associate Director of Undergraduate Education in the School of Molecular and Cellular Biology at the University of Illinois at Urbana Champaign and Brian Ho, Ph.D., researcher and lecturer at the Institute of structural and molecular biology, a joint institute between the Department of structural and molecular biology at the University College of London and the Department of Biological Sciences at Birkbeck University of London discuss the inspiration and motivation for their recent book, Revenge of the...

info_outline
Binning Singletons With Joseph James show art Binning Singletons With Joseph James

Meet The Microbiologist

Joseph James, biologist at the U.S. Environmental Protection Agency, discusses his career trajectory and the creation of Binning Singletons, a unique mentorship program built on peer-to-peer networking at scientific meetings and conferences and was first implemented in 2019 at ASM Microbe. Links for the Episode Binning Singletons and Peer-to-Peer Networking Learn more about . Contact Joe James: [email protected] Follow Binning Singletons: —mSphere article. Binning Singletons: —Guest post on Addgene Blog. —asm.org article that James says has really helped him explain Binning...

info_outline
Biorisk Assessment and Management With Saeed Khan  show art Biorisk Assessment and Management With Saeed Khan

Meet The Microbiologist

Saeed Khan, Ph.D., Head of the Department of Molecular Pathology at Dow diagnostic research and reference laboratory and President of the Pakistan Biological Safety Association discusses the importance and challenges of biosafety/biosecurity practices on both a local and global scale. He highlights key steps for biorisk assessment and management and stresses the importance of training, timing and technology. Ashley's Biggest Takeaways Adequate biosafety and biosecurity protocols depend on a thorough understanding of modern challenges, and scientists must be willing and able to respond to new...

info_outline
From Hydrothermal Vents to Cold Seeps: How Bacteria Sustain Ocean Life With Nicole Dubilier show art From Hydrothermal Vents to Cold Seeps: How Bacteria Sustain Ocean Life With Nicole Dubilier

Meet The Microbiologist

Nicole Dubilier, Ph.D., Director and head of the Symbiosis Department at the Max Planck Institute for Marine Microbiology, has led numerous reserach cruises and expeditions around the world studying the symbiotic relationships of bacteria and marine invertebrates. She discusses how the use of various methods, including deep-sea in situ tools, molecular, 'omic' and imaging analyses, have illuminated remarkable geographic, species and habitat diversity amongst symbionts and emphasizes the importance of discovery-driven research over hypothesis-driven methods. Watch this episode: Ashley's...

info_outline
When Proteins Become Infectious: Understanding Prion Disease With Neil Mabbott show art When Proteins Become Infectious: Understanding Prion Disease With Neil Mabbott

Meet The Microbiologist

From Bovine Spongiform Encephalopathy (BSE) to Creutzfeldt-Jakob disease (CJD), Neil Mabbott, Ph.D., has worked for nearly 2 decades on understanding the mechanisms by which prion proteins become infectious and cause neurological disease in humans and animals. He discusses the remarkable properties of prions and addresses complexities surrounding symptoms, transmission and diagnosis of prion disease.

info_outline
Trillion Dollar Microbes Make the Bioeconomy Go Round With Tim Donohue show art Trillion Dollar Microbes Make the Bioeconomy Go Round With Tim Donohue

Meet The Microbiologist

Episode Summary —ASM Past President, University of Wisconsin Foundation Fetzer Professor of Bacteriologyand Director of the  (GLBRC) calls genomics a game-changer when it comes the potential of microbes to create renewable resources and products that can sustain the environment, economy and supply chain around the world. He also shares some exciting new advances in the field and discusses ways his research team is using microorganisms as nanofactories to degrade lignocellulose and make a smorgasbord of products with high economic value. Take the  Ashley's Biggest...

info_outline
Rabies: The Diabolical Virus With Many Symptoms and Hosts With Rodney Rohde  show art Rabies: The Diabolical Virus With Many Symptoms and Hosts With Rodney Rohde

Meet The Microbiologist

, Regents’ Professor and Chair of the Medical Laboratory Science Program at Texas State University discusses the many variants, mammalian hosts and diverse neurological symptoms of rabies virus. Take the  Ashley’s Biggest Takeaways: Prior to his academic career, Rohde spent a decade as a public health microbiologist and molecular epidemiologist with the  and , and over 30 years researching rabies virus. While at the Department of Health Lab, Rohde worked on virus isolation using what he described as “old school” cell culture techniques,...

info_outline
Increasing Laboratory Capacity for TB Diagnosis With Aureliana Chambal show art Increasing Laboratory Capacity for TB Diagnosis With Aureliana Chambal

Meet The Microbiologist

ASM's Young Ambassador, Aureliana Chambal, discusses the high incidence of tuberculosis in Mozambique and how improved surveillance can help block disease transmission in low resource settings.  Ashley's Biggest Takeaways: Mozambique is severely impacted by the TB epidemic, with one of the highest incidences in Africa (368 cases/ 100,000 people in the population). Human-adapted members of the . These 7 lineages may vary in geographic distribution, and have varying impacts on infection and disease outcome. For decades, 2 reference strains have been used for TB lab research, H37Rv, which...

info_outline
Good Science, Bad Science and How to Make it Better with Ferric Fang and Arturo Casadevall show art Good Science, Bad Science and How to Make it Better with Ferric Fang and Arturo Casadevall

Meet The Microbiologist

The scientific process has the power to deliver a better world and may be the most monumental human achievement. But when it is unethically performed or miscommunicated, it can cause confusion and division. Drs. Fang and Casadevall discuss what is good science, what is bad science and how to make it better. Get the book!

info_outline
 
More Episodes

Manuel Martinez Garcia, Ph.D., a professor of microbiology in the Physiology, Genetics and Microbiology Department at the University of Alicante in Spain, paints a picture of what microbial life looked like thousands of years ago by analyzing microbial genomic signatures within ice cores collected from the Antarctic ice shelves in the 1990s. 

Links for the Episode 

Ashley’s Biggest Takeaways

  • There is a unique habitat beneath Antarctic ice shelves, where microbes live without light and rely on unusual energy sources. 
  • Ice cores from these Antarctic ice shelves can preserve fossilized genomic records of microbial life from long ago. 
  • Comparing past and present samples can help us understand how microbial life is responding to environmental stressors, like temperature changes and acidification, over time.
  • It can also provide key insights to changes in biodiversity.

Featured Quotes: 

Motivation for the Research

Ice shelves are like massive floating ice that are in Antarctica, mainly. They can be as big as, for example, France, the country. So, they are super big—they are enormous. And they can be as thick as, let's say, 1000 meters. So, this is a massive [piece of] ice that we have in our planet.  

And beneath that massive ice, we can have a very peculiar and a special habitat in which microbes live without light. They have to manage, to thrive and reproduce, without using a standard energy like we have on the surface of the sea or in the forest, where we have light that is driving and providing the energy for the ecosystem. But in this case, these ecosystems are totally different. 

[The ice shelves] are deep and interconnected. Basically, there are different oceanic currents, for example, there is one Circumpolar Current that surrounds Antarctica, and there are also other currents that basically go from the bottom to the surface, moving, you know, all the water masses. 

The interesting part of this story is that every single second in our lives, this sea that is beneath the platform, the ice shelf, is frozen over and over, and then we have different layers of antiquity that preserve the microbes that are living in the ocean. So, for example, let's say, 1000 years ago, the sea water was frozen, and then we can find a layer beneath the Antarctica ice shelf, where these microbes are preserved and frozen. Basically, it's like a record—a library of microbes, fossil records of microbes—from the past ocean, from 1000 years ago until present, more or less. 

And then we can go to these records, to these layers of frozen sea water, and pick these samples to somehow recover the genetic material of the microbes that were preserved and frozen 1000 years ago or 500 years ago, in the way that we can somehow reconstruct or build the genetic story of the microbes from the past, for example, pre-industrial revolution to present. 

We need to think that microbes sustain the rest of the food web. So, they sustain of the rest of life in the ocean. They provide carbon for the rest of organisms, the fishes, whales [and other] big animals that we have in our oceans. And if the microbes are responding in a way that is not satisfactory, or in the way that we think can maintain the food web, this is kind of scary. And this is what we are trying to do: we are trying to go back to the past and see how the microbes are changing [genetically]. 

Sample Collection

We didn't collect the samples. [They were collected] back in the 90s, so, 40 years ago, by a German group led by the Alfred Wegener Institute, which is probably one of the most famous polar institutes in the world. They, basically, led an expedition, I think it was in 92, and they decided to go to this ice shelf in Antarctica, in the Filchner–Ronne Ice Shelf to collect these ice cores.  

And then the surprise was when they were progressing in the drilling, they realized that on the top part of the ice core was fresh water, meteoric snow that was compacted forming the ice. But they realized that below that part, there was a sea water that was frozen. And then they thought that these samples were very interesting, because they somehow store material from the past, and they shipped these samples to Alfred Werner Institute in Bremerhaven in Germany.  

And half of the samples were stored for 40 years until I decided to contact the Institute and to propose this research. And I basically contacted the director of the Institute, and also the group of Frank Wilhelm, to propose the idea. And basically, I said, ‘Hey, I think what you have in your research is a valuable material that that can provide interesting answers for climate change and microbiology.’ And they say, ‘Well, that's interesting. And we never thought about that.’ And then we started a collaboration to dig into these questions. 

Shipping the Ice Cores

We had a meeting after one of the first pandemic lockdowns, when they allow [me] to travel. I went to Bremerhaven to have a personal meeting with the team. And we decided to ship some samples to Spain.  

They arrived frozen and very well packaged and preserved in an isolated container. But it was really surprising to see that that they were delivered in the same compartment with a dry ham. That was a that was a funny story! 

Sample Preparation

When we received the samples, the first thing was to basically decontaminate the surface of the [ice]. Because when you unpackage, you have an ice core, pieces like a half meter. And then, we have to think that this ice core has been manipulated by different groups, different people. And you have to decontaminate the surface of the ice core in order to just have the center of the ice core for the for the investigation. 

And basically, we adapted a protocol in order to make sure that we didn’t have cross contamination from the rest of the from the surface. 

So, what we did was we melted the center of the core—well, in fact, different parts of the core with different ages, from 1000 years old to 200 years old—and we melted in a very dedicated laminar flow hood that we have in a clean room. And then, we extracted the DNA from that piece. And in our case, the amount of DNA was so little that we had to amplify with some molecular techniques in order to have [enough] copies of this genetic material to do sequencing. 

Sample Analysis

I will say that we are in the middle of the project. We had, like, 2 years ongoing for the project. 

The most surprising was 2 things. One, in the sea water, beneath the Antarctic, we discovered a very autoctonos (indigenous) viral community that was quite different from the rest of the world, I will say, from the rest of the ocean. So, I think this viral community is quite adapted to infect the microbes that are living in this peculiar environment beneath the Antarctica ice shelf. 

And these viruses were carrying some genes that we think are very important for microbes. We call these genes auxiliary metabolic genes. And these genes are very important because somehow the viruses provide these pieces of information, of DNA material, to microbes that are driving important ecological roles, like, for example, carbon fixation. 

It's very important, because carbon fixation is probably the primary step in all ecosystems—to provide food for the rest of the organisms. And if this is altering, or we are altering it with different factors—like temperature increase, like melting of the ice—its going to change these patterns and the rate of carbon fixation. This is going to produce a deep impact for the rest of organisms. 

We are still investigating, but we think that it's interesting to think that microbes that live in our ocean now are responding to stressing factors like increasing temperature and also acidification by different ways. In fact, it is unclear—it is a very hot topic and a very hot question—because we don't know for sure what the fate of these microbes in our oceans is going to be. For example, people think that we are going to lose biodiversity. There are some hypotheses that say that heterotrophy is going to be more predominant in the sea water. But it's unclear, because we don't really have fossil records that can compare the past to the present, and this is what we can provide, or at least potentially provide. We can say, ‘Hey, we can go before the industrial revolution, before the CO2 increase, and try to compare series of different samples until the present in order to see if, for example, heterotrophy, or microbes that are heterotrophs, are more predominant in modern samples compared to unseen samples.