Neurology Minute
In part two of this four-part series, Casey Kozak discusses Hover's sign, the most well-known test for FND. Show transcript: Casey Kozak: Welcome back to Neurology Minute. My name is Casey Kozak with Rutgers, and today we're continuing our examination of functional neurological disorder. That is physical examination. This episode is dedicated to Hoover's sign, probably the most well-known test for FND, and in my humble opinion, one of the most confusing maneuvers to learn. So today, we're going back to the origin using Dr. Charles Franklin Hoover's original description. Maybe...
info_outlineNeurology Minute
In part one of this four-part series, Casey Kozak breaks down tremors observed during the physical examination of FND. Show transcript: Casey Kozak: Welcome back to Neurology Minute. This is Casey Kozak with Rutgers, and today we'll be discussing a very important and evolving topic, that is Functional Neurological Disorder, or FND. If you're a regular fan of the Minute, you'll have already heard a great miniseries on FND by Jon Stone and Gabriela Gilmour, which focuses on diagnosis and treatment. If you haven't listened yet, I encourage you to check it out. In this series, we're...
info_outlineNeurology Minute
Dr. Margarita Fedorova discusses possible environmental exposures and their risk of Parkinson disease. Show citation: Dorsey ER, De Miranda BR, Hussain S, et al. Environmental toxicants and Parkinson's disease: recent evidence, risks, and prevention opportunities. Lancet Neurol. 2025;24(11):976-986. doi: Show transcript: Dr. Margarita Fedorova: Welcome to Neurology Minute. My name is Margarita Fedorova and I'm a neurology resident at the Cleveland Clinic. Today, we're reviewing some information about possible environmental exposures and their risk of Parkinson disease....
info_outlineNeurology Minute
In the second episode of this two-part series, Drs. Justin Abbatemarco, Valérie Biousse, and Nancy J. Newman discuss the risk of non-arteritic ischemic optic neuropathy and how to counsel patients around GLP-1 medications. Show transcript: Dr. Justin Abbatemarco: Hello and welcome back. This is Justin Abbatemarco again with Valarie Biousse and Nancy Newman talking about non-arteritic ischemic optic neuropathy. I think the other major point that we had a discussion in the podcast was around the GLP-1 medications, which you mentioned have been truly life-changing for diabetes...
info_outlineNeurology Minute
In part one of this two-part series, Drs. Justin Abbatemarco, Valérie Biousse, and Nancy J. Newman discuss common myths around non-arteritic ischemic optic neuropathy (NAION). Show transcript: Dr. Justin Abbatemarco: Hello and welcome. This is Justin Abbatemarco, and I just got done interviewing Valérie Biousse and Nancy Newman on all things around non-arteritic anterior ischemic optic neuropathy. I think one of my favorite takeaways from our interview were breaking some common myths around this disorder. Valérie and Nancy, could you maybe talk about one or two that you think are...
info_outlineNeurology Minute
In part one of this two-part series, Drs. Justin Abbatemarco, Valérie Biousse, and Nancy J. Newman discuss common myths around non-arteritic ischemic optic neuropathy (NAION). Show transcript: Dr. Justin Abbatemarco: Hello and welcome. This is Justin Abbatemarco, and I just got done interviewing Valérie Biousse and Nancy Newman on all things around non-arteritic anterior ischemic optic neuropathy. I think one of my favorite takeaways from our interview were breaking some common myths around this disorder. Valérie and Nancy, could you maybe talk about one or two that you think are...
info_outlineNeurology Minute
Dr. Margarita Fedorova outlines how genetic, environmental, and pathological factors interact in Parkinson’s disease and what this means for patient counseling. Show citation: Blauwendraat C, Morris HR, Van Keuren-Jensen K, Noyce AJ, Singleton AB. The temporal order of genetic, environmental, and pathological risk factors in Parkinson's disease: paving the way to prevention. Lancet Neurol. 2025;24(11):969-975. doi: Show transcript: Dr. Margarita Federova: Welcome to Neurology Minute. My name is Margarita Fedorova, and I'm a neurology resident at the Cleveland Clinic....
info_outlineNeurology Minute
Dr. Tesha Monteith highlights the American Headache Society's position statement, which advocates for migraine screening in girls and women. Show citation: Schwedt TJ, Starling AJ, Ailani J, et al. Routine migraine screening as a standard of care for Women's health: A position statement from the American Headache Society. Headache. Published online December 10, 2025. doi: Show transcript: Dr. Tesha Monteith: Hi, this is Tesha Monteith with the Neurology Minute. Welcome back to our Women's Health and Headache Medicine series. Did you know the American Headache Society recently...
info_outlineNeurology Minute
In the final installment of this series, Dr. Justin Abbatemarco and Dr. Divyanshu Dubey discuss the latest findings and some non-occupational exposures. Show citation: Hinson SR, Gupta P, Paramasivan NK, et al. Neural synaptic vesicle autoimmunity following aerosolized porcine neural tissue exposure: insights into autoimmune inflammatory polyradiculoneuropathy. EBioMedicine. 2025;122:106053. doi: Show transcript: Dr. Justin Abbatemarco: Hello, and welcome back. This is Justin Abbatemarco. I'm here with Divyanshu Dubey, discussing his article, Neural Synaptic...
info_outlineNeurology Minute
In part one of this two-part series, Dr. Justin Abbatemarco and Dr. Divyanshu Dubey discuss the original patient cohort with occupational exposure, what motivated this line of research, and the key findings from the initial workup. Show citation: Hinson SR, Gupta P, Paramasivan NK, et al. Neural synaptic vesicle autoimmunity following aerosolized porcine neural tissue exposure: insights into autoimmune inflammatory polyradiculoneuropathy. EBioMedicine. 2025;122:106053. doi: Show transcript: Dr. Justin Abbatemacro: Hello and welcome. This is Justin Abbatemacro. And I'm...
info_outlineIn part one of this two-part series, Dr. Neishay Ayub discusses the history of a novel anti-epileptic drug, levetiracetam.
Show citations:
Abou-Khalil B. Levetiracetam in the treatment of epilepsy. Neuropsychiatr Dis Treat. 2008;4(3):507-523. doi:10.2147/ndt.s2937
Löscher W, Gillard M, Sands ZA, Kaminski RM, Klitgaard H. Synaptic Vesicle Glycoprotein 2A Ligands in the Treatment of Epilepsy and Beyond. CNS Drugs. 2016;30(11):1055-1077. doi:10.1007/s40263-016-0384-x
Rogawski MA. Brivaracetam: a rational drug discovery success story. Br J Pharmacol. 2008;154(8):1555-1557. doi:10.1038/bjp.2008.221
Ulloa CM, Towfigh A, Safdieh J. Review of levetiracetam, with a focus on the extended release formulation, as adjuvant therapy in controlling partial-onset seizures. Neuropsychiatr Dis Treat. 2009;5:467-476. doi:10.2147/ndt.s4844
Wu PP, Cao BR, Tian FY, Gao ZB. Development of SV2A Ligands for Epilepsy Treatment: A Review of Levetiracetam, Brivaracetam, and Padsevonil. Neurosci Bull. 2024;40(5):594-608. doi:10.1007/s12264-023-01138-2
Mahmoud A, Tabassum S, Al Enazi S, et al. Amelioration of Levetiracetam-Induced Behavioral Side Effects by Pyridoxine. A Randomized Double Blind Controlled Study. Pediatr Neurol. 2021;119:15-21. doi:10.1016/j.pediatrneurol.2021.02.010
Major P, Greenberg E, Khan A, Thiele EA. Pyridoxine supplementation for the treatment of levetiracetam-induced behavior side effects in children: preliminary results. Epilepsy Behav. 2008;13(3):557-559. doi:10.1016/j.yebeh.2008.07.004
Romoli M, Perucca E, Sen A. Pyridoxine supplementation for levetiracetam-related neuropsychiatric adverse events: A systematic review. Epilepsy Behav. 2020;103(Pt A):106861. doi:10.1016/j.yebeh.2019.106861
Show transcript:
Dr. Neishay Ayub:
Hello, my name is Neishay Ayub, and today we are discussing the history of a novel anti-epileptic drug, levetiracetam. It's a story of a scientific dead end, a radical new testing method, and a mystery that took years to unravel. To set the scene, let's go back to 1974. The pharmaceutical company, UCB Pharma, was working on compounds to boost cognitive function. They were looking for a successor to their drug piracetam. During this research, levetiracetam was first synthesized, but the compound didn't show any significant brain-boosting effects. With no discernible purpose, it was filed away and largely forgotten. For nearly two decades, this medicine sat on a shelf an anonymous entry in a long list of failed drug candidates. The story could have ended there, but in the early 1990s, researchers took a different approach to drug discovery. Researchers screened their entire library of forgotten compounds against audiogenic seizure-susceptible mice.
These are mice prone to seizures triggered by sound. Levetiracetam was incredibly ineffective in chronic epileptic mice. Interestingly, levetiracetam had previously failed traditional screening tests which was to prevent acute seizures in normal animals subjected to maximal electroshock or pentylenetetrazole. Levetiracetam was pushed forward to human clinical trials and was found to be efficacious in three placebo-controlled, randomized, blinded clinical trials for adults with refractory focal epilepsy.
Two of the clinical trials reviewed levetiracetam three grams per day compared to placebo. They found the responder rate, i.e., 50% reduction in seizure frequency, was 39% to 42% for patients on three grams per day versus placebo at 10% to 16% when used as adjunctive therapy. One of these trials also used levetiracetam as monotherapy, noting a median percent reduction in focal seizure frequency of 73%, a responder rate of 59%, and 18% of patients achieving seizure freedom. In November 1999, the FDA gave its approval for adjunctive treatment of partial onset seizures.
While levetiracetam was effective, how it worked was still unclear. It didn't affect the ion channels and neurotransmitter receptors that older, more traditional anti-epileptic drugs targeted. Eventually in 2004, scientists made another breakthrough. They identified the drug's primary molecular target, a protein called SV2A. This protein is involved in regulating the release of neurotransmitters. Instead of suppressing all neurologic activity, levetiracetam appears to bind to SV2A and selectively modulate neurotransmitter release in overactive seizing neurons. This precise mechanism is why it has such a favorable side effect profile.
With the mystery solved and a novel mechanism understood, levetiracetam continues to be a popular anti-seizure medication to this day, and its use has been expanded. Further clinical trials led to FDA approvals for use in adult and pediatric patients with myoclonic epilepsy for myoclonic seizures as well as adult and pediatric patients with idiopathic generalized epilepsy for primary generalized tonic-clonic seizures.
There is an off-label use for status epilepticus and seizure prophylaxis in TBI, in traumatic brain injury, subarachnoid hemorrhage, and neurosurgical cases. Formulations have also expanded to include tablets and liquid formulations for immediate release, extended-release tablets, and intravenous formulations. Today, with the original patent expired, generic versions are available, making this treatment accessible to millions. The journey of levetiracetam from an abandoned compound to a frontline treatment is a powerful reminder that in science, a failure might just be a success waiting to be tested in a different way.