Lightening, ... Thunder, Lightening, ... Thunder. August in Ontario is awesome for natural displays of destruction and beauty. Everyone knows that light and sound travel at very different speeds, so when you see a flash of lightening, you can count until you hear the thunder to see how far away the lightening occurred. Roughly 3 seconds for every KM. But how does a flash of light create a deafening boom? It all has to do with plasma. Plasma occurs when you have a high energy reaction that strips electrons off the raw nuclei of their atoms. This results in a state of matter so unstable it creates ionizing radiation, like ultra violet, x-rays and gamma radiation, it's highly susceptible to the effects of electromagnetic fields, and get's extremely hot, very fast.
When you have a large charge differential between clouds in the atmosphere or the clouds and ground, you can create an arc. Basically the air breaks down along these long filaments and the gas itself becomes conductive. All the electrons caught in this eddy of electromagnetism zip off of their orbitals and rush to the positive side of the charge. This causes a sudden flash of plasma. Remember electrons popping up and down between excited states causes excitation in the electromagnetic field. The larger the orbital jump, the higher energy the photon produced. There's your flash. It sweeps across the whole EM field, You're able to see it, smell it, and pick it up on radios on the other side of the planet. All of those electrons being torn away from their comfy atoms all at once means you suddenly have a massive positive charge in the atmosphere. So you get a "Coulomb Explosion". The air effectively detonates, flying apart as the nuclei are no longer held in check by their electrons. The charges are imbalanced and the air explodes creating thunder.
I know this is a stretch, but a similar process can be found in the heart of dying stars. Every bolt of lightening, we experience here is like a miniature super-nova. Seems like the world we live in currently is a kin to stellar destruction. Let's look at the last moments of a large star before it goes super-nova.
For millions or sometimes, billions of years, a star spends its life fusing hydrogen into helium. It then starts to fuse elements that are a bit heavier, leading up iron. Once iron comes into the equation, things get very bad very quickly. Suddenly, it’s no longer able to sustain equilibrium, because iron takes so much energy to produce, the reaction of fusion turns from exothermic to endothermic, the core collapses in on itself, all it's outer fusion layers are in free-fall until they crash against the much smaller core and rebound in a coulomb shockwave, casting off the plasma envelope and sparking a supernova.
The only thing that keeps a star in check is the delicate balance between the energy being created on the inside, and the mass, or gravity, of the star that holds it together. When the shockwave propagates through the star, it pushes a lot of the material away at a speed much greater than the escape velocity of the Iron core. Since all the fusion and energy created insanely hot plasma, the star can no longer hold its form and completely breaks down. The exposed nuclei of the stellar plasma repels against itself as it is unable to keep its electrons at that high energy. The star explodes. Cosmic thunder.
What happens next is completely a product of mass and density. You get either a Neutron star a pulsar or a black hole. Now a black hole is a curious thing. The main distinction here is the event horizon. Turns out everything has an event horizon. It's a sphere where if you were to compress all the mass of an object down to a certain point, you can create a black hole. If you took Mount Everest and tried to fit it into its own event horizon, it would be smaller than a proton. However, if you tried to cram the entire Earth into its own event horizon, you would have an object the size of a peanut. The sun would be only around 3 KM if you crammed it into its event horizon.
People don't really know what happens when a black hole is created. What happens beyond that event horizon. It's called an EVENT horizon, because everything that falls into it, is Causally disconnected from the rest of the universe from that point forward. It's a tipping point where space itself is rushing toward the center of the gravity well faster than the speed of light. Making any outward flow if information completely impossible. This acceleration also means that anything falling into the black hole experiences massive time dilation.
Essentially, anyone watching you fall into a black hole would never see you cross the event horizon. You would approach the blackness, then start to move very slowly, the light coming off you would shift red, then to microwaves, then radio waves, then be completely imperceptible, as your image blurs and fades into nothingness on the surface of the event horizon. The time dilation approaches infinity beyond the event horizon, so there you are, frozen in time... to the outside observer.
But from your point of view, you would just keep falling in. The whole universe would start changing, shifting blue, as you cross rubicon. Eventually, you would be torn apart by the inrush of high energy radiation, as the clockworks of the entire universe play out in a fast-forward ballet. All of this happens long before you experience Spaghetification, and tidal forces stretch your atoms into a thin stream of matter destined for the singularity.
I had an interesting thought when researching this. What if the same rebound forces that occur within supernovae are present in black holes? The star collapses as usual, and rebounds as usual into a super nova, but the fact that the star collapsed into its own event horizon, means the time dilation for the rebound blast wave completely obscures the resulting supernova. Time is stopped. Frozen just before impact. Hovering, like held breath, like the anticipation before your first teenage kiss. A logarithmic curve that will approach zero forever.
When will the black holes release their secrets, and we are once again reunited with everything we've lost to time. It may be when we master, and transcend our causal connections. Casting off our temporal shackles and exist in the forever now. Until then, take a deep breath, close your eyes, and wait for your logarithmic kiss. Forever just hovering a moment away.