MCAT Basics (from MedSchoolCoach)
Join us as we detail MCAT exam topics. Each podcast covers several MCAT sections with lessons based on review material put out by the AAMC, such as practice tests and question banks. Sam also interviews MCAT tutors and experts who share tips on how premed students can raise their score to get into medical school.
info_outline
Light and Optics
12/05/2024
Light and Optics
A foundational part of the MCAT, light and optics bridge the gap between physics and biology, making them vital for your exam preparation. In this episode, Sam Smith breaks down the fundamentals of light, covering both its wave and particle properties. From the energy of photons and the photoelectric effect, to wave behavior and the principles of refraction and reflection, Sam simplifies complex concepts to help you grasp key equations and principles. You'll also learn about lenses, ray tracing, and the real-life applications of polarization. Visit for more help with the MCAT. Jump into the conversation: (00:00) Intro (01:03) Introduction to light and optics (03:10) How photons carry energy (05:34) The photoelectric effect and its significance (17:47) Introduction to waves and simple harmonic motion (18:46) Longitudinal vs. transverse waves explained (21:47) Constructive and destructive interference in wave behavior (23:40) Polarization, reflection, and refraction in light (36:40) How lenses and ray tracing work (44:59) MCAT Advice of the Day
/episode/index/show/mcatbasics/id/34296995
info_outline
Learning and Memory
12/03/2024
Learning and Memory
Learning and memory are foundational concepts that play a critical role in acing the MCAT, especially in the Psych/Soc section. In this episode, host Sam Smith discusses the key concepts of learning and memory, covering the brain structures involved in memory formation, like the hippocampus and amygdala, as well as the different types of memory—explicit, implicit, and working memory. Sam also explores types of learning, including latent learning, observational learning, and the essential principles of classical and operant conditioning, and more. Visit for more help with the MCAT. Jump into the conversation: (00:00) Intro (01:03) How brain structures support learning and memory (02:39) The role of memory in learning processes (03:20) How the information processing model explains memory (16:28) Types of learning: latent, observational, and conditioning (17:48) How observational learning works in social contexts (18:23) Overview of classical and operant conditioning (34:44) MCAT Advice of the Day
/episode/index/show/mcatbasics/id/34258815
info_outline
Study Types and Research Design
11/28/2024
Study Types and Research Design
Understanding study design and research variables is crucial for mastering the MCAT and in medical research. In this episode, host Sam Smith discusses the essentials of study design and research methods, from understanding independent and dependent variables to navigating the complexities of correlation, causation, and confounding variables. You’ll learn about the different types of studies, including experimental, observational, case-control, and cohort designs, and how they apply to MCAT questions. Plus, we’ll explore odds ratios, study validity, and the importance of specificity and sensitivity in diagnostic tests. This episode also covers common study limitations and biases, helping you sharpen your critical thinking skills for exam day. Visit for more help with the MCAT. Jump into the conversation: (00:00) Intro (01:22) Types of variables seen in studies (03:10) Correlation and Pearson correlation coefficient (05:38) Causation vs. correlation (07:16) Confounding variables: Examples and impact (08:55) Odds ratio and study applications (11:00) Validities in experiments (16:20) Specificity vs. sensitivity in diagnostic tests (19:13) Types of studies: Experimental and observational (31:32) Single blind vs. double blind studies (32:58) Randomized controlled trials (RCTs) (35:57) Research limitations and study bias (45:39) MCAT Advice of the Day
/episode/index/show/mcatbasics/id/34189520
info_outline
Organic Chemistry Mechanisms To Know
11/26/2024
Organic Chemistry Mechanisms To Know
In this episode, Sam Smith will discuss and help you understand the essential organic chemistry mechanisms and reactions you may encounter when taking the MCAT. From nucleophilic substitution reactions like SN1 and SN2 to aldol condensation and oxidation and reduction of alcohols, Sam will cover the high-yield topics that are crucial for your test prep. He will also touch on key IR and NMR values that could appear on your exam. Visit for more help with the MCAT. Jump into the conversation: (00:00) Intro (01:42) SN1 and SN2 nucleophilic substitution reactions, mechanisms, and key concepts (03:18) Carbonyl substitution and addition reactions (06:12) Introduction to aldol condensation reactions (07:17) Overview of oxidation and reduction reactions (10:09) Explanation of Fischer esterification and saponification (12:51) Summary of elimination reactions (E1 and E2) and their distinguishing features. (13:38) What numbers to know for IR and NMR
/episode/index/show/mcatbasics/id/34151145
info_outline
Social Groups
11/21/2024
Social Groups
Mastering the concept of sociological groups can unlock a deeper understanding of how we interact and influence each other. On top of that, social interactions and group dynamics form the backbone of the Psych/Soc section of the MCAT, so mastering this topic is key to a good score. In this episode, host Sam Smith breaks down the essential topic of sociological groups. You’ll gain a comprehensive understanding of the different types of groups, the dynamics within organizations, bureaucracy, and social networks, and key concepts like groupthink, group polarization, and social loafing. We also explore how these concepts apply to real-world examples, from business partnerships to historical events like the Salem witch trials. Visit for more help with the MCAT. Jump into the conversation: 00:00 Intro 02:09 Types of social groups and social networks 08:06 Organizations and bureaucracy 10:17 Normative organizations 16:16 Group interactions and dynamics 20:08 Difference between group think and group polarization 27:57 Deindividuation, aka the ‘mob mentality’ 31:57 Cultural groups and assimilation 34:22 MCAT Advice of the Day
/episode/index/show/mcatbasics/id/33984632
info_outline
Genetics: Gene Expression
11/19/2024
Genetics: Gene Expression
In this episode, we explore key topics in genetics, including how sex-linked and autosomal traits are inherited. We'll break down inheritance patterns using real-world examples, like X-linked recessive diseases, and walk through Punnett square problems to show how these traits are passed down. We also cover the regulation of gene expression, focusing on epigenetic changes such as DNA methylation and how genetic imprinting impacts which genes are expressed. You'll gain insight into transcriptional and post-transcriptional control mechanisms in prokaryotes and eukaryotes, along with the processes of DNA repair that maintain genetic stability. Finally, we discuss important genetic lab techniques, such as PCR, blotting methods, and fluorescence in situ hybridization (FISH), and how they are used in gene analysis and diagnostics. Visit for more help with the MCAT. Jump into the conversation: (00:00) Intro (01:49) Inheritance patterns (04:47) Solving X-linked inheritance problems using color blindness (06:37) Overview of autosomal dominant and recessive traits (08:08) Monohybrid and dihybrid crosses (10:40) How epigenetic changes affect gene expression (18:46) Transcriptional and translational control in prokaryotic operons (23:03) Enhancers, silencers, and chromatin remodeling (27:23) Post-transcriptional modifications (31:52) DNA repair mechanisms (40:14) Polymerase Chain Reaction (44:06) What different blotting techniques are used for (49:28) The FISH technique (52:01) MCAT Advice of the Day
/episode/index/show/mcatbasics/id/33918454
info_outline
Genetics: Chromosomes, Meiosis and Mitosis, and Inheritance Patterns
11/14/2024
Genetics: Chromosomes, Meiosis and Mitosis, and Inheritance Patterns
In this episode, we cover the foundational concepts of genetics, focusing on chromosomes, mitosis, meiosis, and inheritance patterns—important topics for the MCAT Bio/Biochem section. We’ll discuss how Gregor Mendel’s laws of segregation, independent assortment, and dominance influence inheritance and how Charles Darwin’s theory of natural selection relates to modern genetics. The episode includes an overview of chromosome structure, the differences between X and Y chromosomes, and the effects of chromosomal mutations like deletions, duplications, and translocations. Mitosis and meiosis are also explained, with an emphasis on their roles in cell division and genetic diversity. Additionally, we explore genetic concepts such as codominance, incomplete dominance, genetic leakage, and how factors like penetrance and expressivity influence gene expression. Visit for more help with the MCAT. Jump into the conversation: (00:00) Introduction to Genetics and Chromosomes (01:41) Background on genetics: Key figures and their contributions (Mendel, Darwin) (03:37) Mendel’s Laws: Segregation, independent assortment, and dominance (05:50) Charles Darwin: Evolution and natural selection in genetics (09:43) Chromosomes and DNA: Discovery and role in inheritance (11:29) Chromosome Numbers and Structure: Ploidy, chromatids, and human chromosomes (14:06) X and Y Chromosomes: Sex determination and sex-linked traits (18:34) Chromosomal Mutations: Duplication, deletion, inversion, translocation (22:00) Mitosis: Stages and the production of identical daughter cells (28:16) Meiosis: Gamete formation and genetic diversity (32:40) Centrosome, Centromere, and Centriole: Roles in cell division (33:50) Genes and Phenotypes: Alleles, genotypes, and their effect on traits (38:28) Dominant and Recessive Alleles: How traits are determined (40:37) Genetic Leakage, Penetrance, and Expressivity: Gene flow, expression likelihood, and variability (42:47) MCAT Advice of the Day
/episode/index/show/mcatbasics/id/33891652
info_outline
Enzyme Kinetics, Inhibition, and Categorization
11/12/2024
Enzyme Kinetics, Inhibition, and Categorization
In this episode, we explore enzyme kinetics and inhibition, key concepts for the MCAT Bio/Biochem section. We’ll cover how enzymes accelerate biological reactions by lowering activation energy and introduce two models for enzyme-substrate interaction: the lock-and-key model and the induced fit model. You'll learn how to apply the Michaelis-Menten equation, focusing on factors like Km and Vmax to understand enzyme efficiency and substrate binding. We’ll also break down the different types of enzyme inhibition—competitive, non-competitive, and uncompetitive—and their effects on enzyme activity. Finally, we discuss the six major types of enzymes and their roles in biological processes, with examples like ligases, isomerases, and hydrolases. Visit for more help with the MCAT. Jump into the conversation: (00:00) Introduction to enzyme kinetics and inhibition (01:58) Definition of enzymes and their role (03:50) Enzyme models: lock and key vs. induced fit (06:28) Michaelis-Menten Equation (10:53) Association and dissociation constants (12:34) Kcat and catalytic efficiency (14:43) Assumptions of Michaelis-Menten (18:23) Lineweaver-Burk Plot: linearized Michaelis-Menten Equation (21:09) Enzyme inhibition: reversible vs. irreversible (22:14) Competitive inhibition: Km and Vmax (24:46) Non-competitive inhibition: Effects on Km and Vmax (27:20) Irreversible inhibition (29:13) Allosteric inhibition (31:26) Homotropic and feedback inhibition (37:40) Common biological enzymes: dehydrogenase, synthetase, and kinase (43:44) MCAT Advice of the Day
/episode/index/show/mcatbasics/id/33891287
info_outline
Biomolecule Structure, Naming, And Function
11/07/2024
Biomolecule Structure, Naming, And Function
In this episode, we’ll learn the intricate world of biomolecule structure, naming, and function. We'll explore the structural nuances between glucose and fructose and unravel the complexities of glycosidic linkages in sucrose. We'll also examine the vital roles of fatty acids, the composition of triglycerides and phospholipids, and their impact on cell membrane architecture and fluidity. Plus, we discuss cholesterol's bidirectional regulation of membrane stability and the contrasting roles of LDL and HDL in cardiovascular health. We’ll dive into the essential structures and functions of steroids and nucleotides, as well as the fundamentals of DNA and RNA structure and the importance of ATP. We'll also look at the unique properties of sphingolipids, glycerophospholipids, and signaling molecules like eicosanoids. So, tune in as we break down these critical biomolecules that form the foundation of life and are essential knowledge for the MCAT exam. Visit for more help with the MCAT. Jump into the conversation: (00:00) Intro (01:03) Overview of Biomolecule Structure and Importance (02:37) Steroid Structure and Function (06:36) Nucleotide Structure and Function (12:02) DNA Structure and Bonding (16:30) Carbohydrate Structure (19:53) Disaccharides and Polysaccharides (24:47) Fatty Acids and Phospholipids (28:57) Cholesterol and Its Role in Membrane Fluidity (31:27) Sphingolipids and Their Functions (33:02) Eicosanoids: Signaling Molecules (38:12) Heme Groups and Their Functions (41:12) Molecule Entry into Cells (44:12) MCAT Advice of the Day
/episode/index/show/mcatbasics/id/33823532
info_outline
Metabolism: Gluconeogenesis, Pentose Phosphate Pathway, and More
11/05/2024
Metabolism: Gluconeogenesis, Pentose Phosphate Pathway, and More
In this episode, we're diving deep into the nuanced aspects of metabolism that are essential yet less prominently featured on the MCAT. We'll cover gluconeogenesis, the pentose phosphate pathway, and ketone body generation—topics that, while subtle, play a crucial role in your comprehensive understanding of biochemistry. We'll explore how your body manages glucose levels, the functions of NADPH, how glycogen is synthesized and broken down, and the metabolic adaptations during periods of low glucose. Visit for more help with the MCAT. Jump into the conversation: (00:00) Intro (01:54) Pentose phosphate pathway overview (02:42) Functions of NADPH in the body (03:35) Difference between NADPH and NADH (04:34) Key points to know about the pentose phosphate pathway (07:01) Insulin and glucagon: hormonal regulation of blood glucose (09:00) Effects of insulin & glucagon on the body (10:48) Glycogen synthesis & breakdown (15:51) Glycogen debranching enzyme and breakdown of branched chains (18:49) Bypassing irreversible steps in glycolysis during gluconeogenesis (21:19) Regulation of gluconeogenesis (22:25) Ketogenic amino acids and their role in ketone body formation (24:04) MCAT advice of the day: reading journal articles
/episode/index/show/mcatbasics/id/33788167
info_outline
Metabolism: Glycolysis, Krebs Cycle, Electron Transport Chain
10/31/2024
Metabolism: Glycolysis, Krebs Cycle, Electron Transport Chain
In this episode, Sam Smith covers the intricacies of metabolism, focusing on glycolysis, the Krebs cycle, and the electron transport chain. First, the podcast explores the process of glycolysis, breaking down the key enzymes, intermediates, and regulation points. Next is the citric acid cycle, examining its regulation, energy production, and the roles of specific enzymes and intermediates. Lastly, we look at the electron transport chain and discuss how electrons are transferred through the five complexes, creating a proton gradient that drives ATP synthase to produce ATP. Visit for more help with the MCAT. Jump into the conversation: (00:00) Intro (03:15) Ten steps of glycolysis: Intermediate names and enzymes (08:01) Simplified glycolysis process: Breaking down key steps (12:30) Glycolysis regulation: Allosteric regulation of enzymes (21:13) Mnemonics for Krebs cycle intermediates (25:52) Regulation of the Krebs cycle: ATP, calcium, and more (30:26) Electron transport chain: Overview and key steps (34:35) ATP synthase (33:00) Reduction potentials in the electron transport chain (37:31) Synopsis of metabolism (40:34) MCAT Advice of the Day
/episode/index/show/mcatbasics/id/33548742
info_outline
Acids and Bases
10/29/2024
Acids and Bases
Acids and bases are foundational topics in chemistry, crucial for understanding various biological and chemical systems you'll encounter in the MCAT. In this episode, host Sam Smith discusses the selection and use of indicators in titrations to the pH at the equivalence point and the importance of buffers in maintaining physiological pH levels. You'll learn about the Henderson-Hasselbalch equation, the blood buffer system, and how to tackle common problems involving acids and bases. Plus, we'll break down strong and weak acids and the significance of their dissociation constants. This episode also shares tips on calculating pH, using ICE tables for weak acid problems, and converting between pH, pOH, and ion concentrations. Visit for more help with the MCAT. Jump into the conversation: (00:00) Intro (02:16) Basic definitions of acids and bases (11:33) Calculating pH (24:55) Titrations (35:26) Buffers (41:16) Blood buffer system (45:25) MCAT advice of the day
/episode/index/show/mcatbasics/id/33548707
info_outline
The Nervous System
10/24/2024
The Nervous System
A foundational topic for the MCAT is the nervous system, appearing in several exam sections and impacting everything from neurotransmission to brain structure. In this episode, Sam Smith walks us through the nervous system, covering its major components and functions. From the organization of the central and peripheral nervous systems to neurotransmitters and brain structures, Sam provides clear explanations to help you understand key topics like the autonomic nervous system's fight-or-flight response, brain imaging techniques, and more. Visit for more help with the MCAT. Jump into the conversation: (00:00) Intro (01:03) How the central and peripheral nervous systems are organized (02:33) Autonomic and somatic systems (03:22) Sympathetic and parasympathetic branches (04:12) How the brain is structured: forebrain, midbrain, and hindbrain (11:44) How brain imaging techniques (CT, MRI, EEG, fMRI, PET) are used (14:06) How neurons are structured and how they transmit signals (16:00) How action potentials work and how ion channels play a role (20:30) How myelin sheaths speed up signals (25:00) How language processing happens in Broca's and Wernicke's areas (28:00) Neurological disorders (43:45) The structures of the limbic system (47:25) The structures of the brain related to addiction
/episode/index/show/mcatbasics/id/33460047
info_outline
Amino Acids
10/22/2024
Amino Acids
Amino acids are the building blocks of life and an essential topic for the MCAT. In this episode, host Sam Smith takes us through the key concepts of amino acids, including their structures, naming conventions, and roles in protein formation. We’ll cover the differences between hydrophobic and hydrophilic amino acids, how to memorize single-letter abbreviations, and the importance of charged amino acids in physiological conditions. Additionally, Sam touches on mutations and how they can affect protein folding and enzyme function. Visit for more help with the MCAT. Jump into the conversation: (00:00) Intro (01:47) Amino acids naming conventions and abbreviations (04:49) Hydrophobic vs. hydrophilic amino acids (05:39) Charged and uncharged amino acids (10:14) Explanation of mutation notation (11:53) Mutations affecting the substrate pocket of enzymes (13:15) Mutations impacting enzyme functionality (15:58) Role of amino acids in protein tertiary structure (17:15) Salt bridges and protein stability (20:47) Quiz
/episode/index/show/mcatbasics/id/33459557
info_outline
Gluconeogenesis
10/17/2024
Gluconeogenesis
One of the body's key survival mechanisms is gluconeogenesis, a vital metabolic process, and the body's clever way of making glucose when supplies are low. On this episode of the MCAT Basics podcast, guest host Alex Starks walks through the process of gluconeogenesis. He explains how the body generates glucose when levels drop. Highlighting the liver's role, Alex explains how amino acids, lactate, and glycerol are converted into glucose. The episode also touches on the energy demands of the process and why muscle cells aren't involved in gluconeogenesis. Visit for more help with the MCAT. Jump into the conversation: (00:00) Intro (02:15) Overview of glucose metabolism and glycogen storage (03:37) The liver’s role in maintaining blood glucose levels (05:11) Glucogenic amino acids and their role in glucose production (06:06) Conversion of alanine and glutamine to pyruvate (06:53) Lactate and the Cori cycle (07:34) Glycerol from triglycerides entering gluconeogenesis (08:27) The first bypass reaction: Pyruvate to oxaloacetate (09:55) The role of mitochondria and the malate-aspartate shuttle (11:00) Phosphoenolpyruvate formation and energy requirements (12:16) Steps of gluconeogenesis and ATP consumption (13:38) The second bypass reaction: Fructose 1,6-bisphosphate to fructose 6-phosphate (14:16) The third bypass reaction: Glucose 6-phosphate to glucose (15:31) Gluconeogenesis regulation and the role of glucagon (17:10) Quiz
/episode/index/show/mcatbasics/id/33459277
info_outline
Electron Transport Chain
10/15/2024
Electron Transport Chain
The electron transport chain is a fundamental pathway in biochemistry, critical for understanding the energy production that powers cellular function. In this episode, guest host Alex Starks breaks down the intricate process of the electron transport chain (ETC). Building on previous discussions of glucose metabolism, Alex walks through the components that play key roles in the movement of electrons through complexes within the inner mitochondrial membrane. We also cover the functions of coenzyme Q and cytochrome c, as well as oxygen’s critical role in completing the process. Visit for more help with the MCAT. Jump into the conversation: (00:00) Intro (02:11) Recap of glycolysis, pyruvate, and the Krebs cycle (03:02) Location of the TCA cycle and ETC in the mitochondria (04:22) Overview of NADH and FADH2 production (05:38) Complex I: NADH dehydrogenase and coenzyme Q (08:00) Complex II: Succinate dehydrogenase and FADH2 (11:15) Complex III: Cytochrome c reductase and the role of proton pumping (14:32) Complex IV: Cytochrome c oxidase and oxygen (18:14) The role of ATP synthase (21:47) Total ATP yield from aerobic respiration (26:00) How the electron chain is disrupted (30:20) Uncouplers and their metabolic effects (35:16) Quiz
/episode/index/show/mcatbasics/id/33458982
info_outline
The Krebs Cycle
10/10/2024
The Krebs Cycle
One of the most fundamental biochemical processes is the Krebs cycle. This metabolic pathway plays a critical role in both the Chem Phys and Bio/Biochem sections of the MCAT, so understanding it is key. In this episode, our guest host, Alex Starks, walks us through the transformation of pyruvate into acetyl CoA via the Pyruvate Dehydrogenase Complex (PDC). We’ll explore how thioester bonds help transfer energy within the cycle, how acetyl CoA combines with oxaloacetate to form citrate, the difference between enzymes like synthetases and synthases, and how GTP is produced. We’ll also make connections to the electron transport chain and discuss how the TCA cycle influences blood pH through CO2 production. Visit for more help with the MCAT. Jump into the conversation: (00:00) Intro (01:05) Recap of glycolysis and pyruvate (02:45) Pyruvate dehydrogenase complex (PDC) (03:40) Role of acetyl CoA in the Krebs cycle (05:37) How citrate is formed (07:17) How isocitrate is formed (10:00) How alpha-ketoglutarate is formed (13:42) How succinate and GTP are formed (16:28) How succinate, fumarate and oxaloacetate are formed (18:23) Fumarate converted to malate (21:53) Recap of the Krebs cycle and ATP yield (25:00) Regulation of the Krebs cycle (26:16) Quiz
/episode/index/show/mcatbasics/id/33377342
info_outline
Glycolysis
10/08/2024
Glycolysis
In this episode, guest host Alex Starks introduces the Metabolism series by examining glycolysis, a fundamental biochemical pathway for energy production. The discussion covers glucose digestion, the role of insulin and glucose transporters, and the step-by-step breakdown of glucose within cells. Alex also offers a detailed explanation of how glucose is processed to generate energy and outlines the key reactions involved. This episode provides a thorough overview of glycolysis offers valuable study strategies for mastering this topic on the MCAT. Visit for more help with the MCAT. Jump into the conversation: (00:00) Intro (01:08) Overview of metabolism and starting the series (02:41) Digestion and absorption of glucose into the bloodstream (04:10) The liver’s role in glucose transport and GLUT2 (05:05) The role of insulin in glucose uptake by muscles and fat cells (07:48) Trapping glucose in the cell with glucose phosphorylation (09:32) Glycolysis Step-by-step breakdown of glycolysis (17:41) NADH and ATP production during glycolysis (22:30) Pyruvate and NADH fates in anaerobic and aerobic respiration (25:12) Quiz: Metabolism quiz and study tips for the MCAT
/episode/index/show/mcatbasics/id/33365732
info_outline
Biosignaling
10/03/2024
Biosignaling
In this episode, we focus on biosignaling and cover how cells communicate through systems like voltage-gated and ligand-gated ion channels, using real-world examples such as neuronal signaling and muscle contraction. We also break down the role of enzyme-linked receptors, specifically receptor tyrosine kinases (RTKs), and explore how these pathways are involved in cell growth and cancer. Additionally, we take a detailed look at G-protein coupled receptors (GPCRs) and their role in activating secondary messenger systems like cyclic AMP (cAMP). Visit for more help with the MCAT. Jump into the conversation: (00:00) Intro (00:32) Overview of Biosignaling (01:05) Introduction to Biosignaling and its Importance (01:49) Stimulus-Response Concept: Fight or flight, glucose homeostasis, transcription regulation (02:34) Voltage-Gated Ion Channels: Activated by changes in membrane potential (03:29) Action Potential: Sodium channels and signal propagation (05:01) Ligand-Gated Ion Channels: Role in neuron-to-neuron signaling (06:01) Muscle Contraction: Acetylcholine's role in skeletal muscle contraction (07:29) Misconception on Calcium: Sodium initiates muscle cell depolarization, not calcium (08:33) Enzyme-Linked Receptors: Focus on receptor tyrosine kinases (RTKs) (09:39) RTKs and Cancer: How RTK signaling pathways are linked to cancer (12:00) G-Protein Coupled Receptors (GPCR): Structure and function of GPCRs (14:43) Adenylate Cyclase and cAMP: Role of GTP in activating adenylate cyclase and producing cAMP (18:10) Quiz Question 1: Ion specificity in potassium channels (22:54) Quiz Question 2: Hypertension treatment and G-protein pathways (25:00) Biosignaling as the foundation for cellular responses
/episode/index/show/mcatbasics/id/33303317
info_outline
Gas Phase
10/01/2024
Gas Phase
In this episode, guest host Alex Starks dives into Gas-Phase Concepts for the MCAT. He breaks down the physical properties of gases, explores the ideal gas law, and unpacks the ABCD laws of gases. Alex also covers key conditions that influence molecular collisions in gases and highlights the most important takeaways to help you excel in this section of the exam. Visit for more help with the MCAT. Jump into the conversation: (00:00) Intro: Med School Coach promotion and podcast introduction (02:01) Physical properties of gases (06:03) The ideal gas laws (09:40) Conditions that promote molecular collisions in gases (10:34) The ABCD gas law (13:02) The Van der Waals equation (14:33) Gas laws quiz (16:29) Key takeaways
/episode/index/show/mcatbasics/id/33269237
info_outline
The Lymphatic System
09/26/2024
The Lymphatic System
In this episode, we focus on the lymphatic system, a crucial topic for the Bio/Biochem section of the MCAT. We'll cover the structure of the lymphatic system, including lymphatic vessels, lymph nodes, and major organs such as the bone marrow and thymus. You'll also learn about the system’s primary functions: returning fluid to the blood, supporting the immune system, and absorbing fats and fat-soluble nutrients. Hosts Sam Smith and Alex Starks break down how the lymphatic system plays a vital role in immunity, nutrient absorption, and fluid balance. By the end of this episode, you'll gain a deeper understanding of the lymphatic system's anatomy and physiology, helping you prepare for MCAT-related questions. Visit for more help with the MCAT. Jump into the conversation: (00:00) Intro: Med School Coach MCAT Tutoring Promotion (01:01) Episode Introduction: Lymphatic System Overview (01:07) Co-Host Introduction: Sam Smith and Alex Starks (01:19) Episode Outline: Structure and Functions of the Lymphatic System (02:39) Structure of the Lymphatic System: Vessels, Nodes, and Organs (04:06) Lymph: Composition and Role in the Body (04:44) Lymphatic Vessels and Their Role in Transport (06:50) Primary and Secondary Lymphoid Organs: Bone Marrow, Thymus, and Lymph Nodes (09:10) Bone Marrow and B-Cell Maturation (09:45) Thymus and T-Cell Maturation
/episode/index/show/mcatbasics/id/33200082
info_outline
Psychological Disorders
09/24/2024
Psychological Disorders
In this episode, we dive into psychological disorders, a crucial topic for the Psych/Soc section of the MCAT. We’ll start by defining what a psychological disorder is, highlighting key concepts like significant stress and deviant behavior, and discussing how they’re classified using the DSM-5. You'll learn about various categories of disorders, including anxiety disorders, obsessive-compulsive disorders, trauma and stressor-related disorders, and more. We’ll explore the biopsychosocial and biomedical approaches to understanding these conditions, providing insight into the biological, psychological, and social factors that contribute to mental health issues. By the end of this episode, you'll have a comprehensive understanding of the different types of psychological disorders and how they are categorized and treated, helping you tackle related questions on the MCAT. Visit for more help with the MCAT. Jump into the conversation: (00:00) Intro: Med School Coach promotion and podcast introduction (01:03) Overview of Psychological Disorders: Episode topics and structure (02:13) Defining Psychological Disorders: Significant stress and deviant behavior (05:29) Biopsychosocial vs. Biomedical Approaches: Holistic vs. traditional perspectives (09:18) DSM-5 Classification of Psychological Disorders: Overview of main categories (10:37) Anxiety Disorders: Fear and anxiety beyond normal levels (16:43) Obsessive-Compulsive Disorder: Obsessions and compulsions explained (18:20) Trauma and Stressor-Related Disorders: PTSD and related disorders (19:19) Somatic Symptom Disorders: Physical symptoms causing mental distress (22:01) Bipolar and Related Disorders: Mood swings and differentiating Bipolar I and II
/episode/index/show/mcatbasics/id/33174782
info_outline
The Respiratory System
09/19/2024
The Respiratory System
In this episode, we cover the respiratory system, an important topic for the MCAT Bio/Biochem section. We'll go over the anatomy of the respiratory system, highlighting key structures such as the lungs, bronchi, bronchioles, and alveoli, and explain how they contribute to respiratory functions. You'll also learn about the main roles of the respiratory system, including gas exchange, thermoregulation, particle filtration, and maintaining blood pH. We’ll break down the mechanics of breathing, including the role of the diaphragm and intercostal muscles, and how pressure changes drive air into and out of the lungs. We also cover the importance of pulmonary surfactant in preventing alveolar collapse and how partial pressures influence gas movement. Visit for more help with the MCAT. Jump into the conversation: (00:00) Intro (01:02) Overview: Functions of the respiratory system (01:28) Main Functions: Gas exchange, thermal regulation, particle filtration, pH control (02:20) Upper Respiratory Tract: Nose, nasal cavity, sinuses, larynx, trachea (05:00) Lower Respiratory Tract: Lungs, bronchi, bronchioles, and alveoli (09:28) Airflow Pathway: How air travels through the respiratory system (10:23) Gas Exchange: Oxygenation and CO2 removal (11:27) Breathing Mechanics: Diaphragm and intercostal muscles (13:04) Pressure Differentials: How pressure changes drive airflow (15:01) Surface Tension in Alveoli: Importance of pulmonary surfactant (18:17) Lung Compliance and Elasticity: How lung tissue stretches and returns to shape (21:48) Gas Exchange Process: Partial pressures of oxygen and carbon dioxide (24:59) Partial Pressure Explained: Role in moving gases during respiration (30:31) Thermoregulation: Maintaining body temperature through respiration (35:59) Particle Filtration: Nasal hairs and mucous cilia system (39:44) pH Regulation: How breathing controls blood pH (41:18) Respiratory Control: Involuntary and voluntary mechanisms, brainstem functions
/episode/index/show/mcatbasics/id/33086307
info_outline
DNA Mutations and Repair
09/17/2024
DNA Mutations and Repair
In this episode, we focus on DNA mutations and repair, a key topic for the Bio/Biochem section of the MCAT. We'll cover the different types of mutations, including point mutations, insertions, and deletions, and explain how they occur due to replication errors or environmental factors like UV radiation. You'll also learn about the repair mechanisms that fix these genetic changes, such as direct reversal, mismatch repair, and base excision repair. We’ll also discuss how double-strand breaks are addressed through homologous recombination and non-homologous end joining. By the end of this episode, you'll gain a thorough understanding of how mutations happen and the processes the body uses to repair them, helping you prepare for related MCAT questions. Visit for more help with the MCAT. Jump into the conversation: (00:00) Intro (01:07) Overview of DNA Mutations and Repair (01:45) What is a Mutation? (02:30) Mutations During DNA Replication (03:29) DNA Polymerase Slippage: Causes duplication of repeated sequences in DNA (06:15) Mutations Before or After Replication: Caused by mutagens like radiation or chemicals (07:19) Mutagens vs. Carcinogens: Differences between agents that cause mutations and those that cause cancer (09:56) Types of Mutations: Overview of point mutations, insertions, and deletions (12:00) Frameshift Mutations: How insertions or deletions shift the reading frame (29:50) Chromosomal Mutations: Inversions and translocations (35:35) DNA Repair Mechanisms: Introduction to replication repair, mutation repair, and break repair (36:51) Proofreading by DNA Polymerase: Repairing replication errors (39:20) Direct Reversal DNA Repair: Enzymes directly fix damaged DNA (40:41) Mismatch Repair: Fixing base mismatches and insertion-deletion loops (43:25) Base Excision Repair: Correcting single-base mutations (46:03) Nucleotide Excision Repair: Fixing bulky DNA damage like pyrimidine dimers (47:56) Interstrand Cross-Link Repair: Repairing DNA strands covalently cross-linked together (50:27) Single-Strand Break Repair: Ligating broken DNA strands back together (51:16) Double-Strand Break Repair: Homologous recombination and non-homologous end joining (54:13) Summary of DNA repair mechanisms
/episode/index/show/mcatbasics/id/33016922
info_outline
Social Institutions
09/12/2024
Social Institutions
In this episode, we focus on the structure and role of key social institutions for the MCAT Psych/Soc section. We'll break down the five major institutions—health and medicine, education, family, religion, and government—and explain how each shapes societal norms and individual behavior. You’ll learn about concepts like medicalization, the sick role, and how healthcare is delivered, as well as the hidden curriculum and educational segregation. We’ll also cover family structures, kinship types, and how religion influences social change. Lastly, we’ll touch on political systems and the difference between power and authority, all of which are important for the MCAT. By the end, you’ll be equipped to understand how these institutions impact society and approach related MCAT questions with confidence. Visit for more help with the MCAT. Jump into the conversation: (00:00) Intro (01:03) Introduction to Social Institutions (01:54) Definition of Social Institutions (04:24) Formal vs. Informal Institutions (05:03) Health and Medicine: Structure and Function (07:49) Medicalization and the Sick Role (09:56) Delivery of Healthcare (12:18) Illness Experience (13:59) Social Epidemiology (17:05) Education: Structure and Function (19:37) Educational Segregation and Stratification (24:03) Teacher Expectancy (25:06) Family: Structure and Function (28:46) Violence in the Family (29:26) Religion: Structure and Function (32:25) Religion and Social Change (35:43) Government and Economy: Structure and Function (37:11) Power vs. Authority (38:23) Types of Political Systems (41:06) Division of Labor
/episode/index/show/mcatbasics/id/33016642
info_outline
Aromatic Compounds
09/10/2024
Aromatic Compounds
In this episode, we break down aromatic compounds, a crucial topic for the Biochem and Chem/Phys sections of the MCAT. You’ll learn what makes a compound aromatic, how to identify them using Huckel’s Rule, and the difference between aromatic, antiaromatic, and nonaromatic compounds. Sam Smith covers key examples like benzene, toluene, and phenol, and explains their role in biological systems like DNA and the electron transport chain. With practical tips and MCAT-focused insights, you'll be ready to tackle questions on aromatic compounds with confidence. Visit for more help with the MCAT. Jump into the conversation: (00:00) Introduction and Med School Coach Promotion (01:03) Introduction to the Topic: Aromatic Compounds (02:08) Definition of Aromatic Compounds and Electron Delocalization (04:43) Explanation of Huckel’s Rule and Aromaticity Criteria (07:59) Introduction to Antiaromatic Compounds (09:58) Definition of Polycyclic and Heterocyclic Aromatic Compounds (12:02) Common Aromatic Compounds to Know: Benzene, Toluene, Phenol, Aniline (14:54) Properties of Aromatic Compounds: Physical, Stability, Fluorescence, Basicity (20:15) Aromatic Compounds in Biology: Amino Acids, DNA/RNA, Electron Transport Chain (28:14) Conclusion and Outro
/episode/index/show/mcatbasics/id/32967192
info_outline
Aging
09/05/2024
Aging
Aging is an essential topic for the MCAT, and in this episode, we’ll explore it from multiple angles. We start with the biological aspects of aging, including key processes like telomere shortening, cell senescence, and mitochondrial dysfunction—each providing insight into how and why cells age. From there, we dive into how aging impacts the brain, including the types of memory and cognitive functions that either decline or improve with age. Lastly, we’ll cover the sociology of aging, focusing on the life course theory, the social significance of aging, and demographic changes. Expect a comprehensive breakdown of these concepts, with real-world applications and examples to reinforce your understanding. Visit for more help with the MCAT. Jump Into the Conversation: (00:00) Intro (02:30) Cellular markers of aging: Protein aggregation and telomere shortening (04:55) Exploring cell senescence and autophagy dysregulation (07:20) Mitochondrial dysfunction and its role in cellular aging (09:10) Deep dive into telomeres and the Hayflick Limit (12:30) Introduction to aging in the brain (13:45) Memory and cognitive functions that remain stable with age (15:30) Brain functions that improve as we age: Crystallized intelligence and emotional intelligence (17:00) Brain functions that decline with age: Episodic memory and processing speed (19:30) Causes of changes in brain function: Brain size, vasculature, and neurotransmitter levels (22:15) Introduction to the life course theory and its relation to aging (24:45) The social significance of aging in different cultures (26:00) The aging population and its impact on healthcare
/episode/index/show/mcatbasics/id/32891897
info_outline
Personality
09/03/2024
Personality
In this episode, we focus on personality and the theories relevant for the MCAT. We’ll cover key perspectives, such as psychoanalytic theory, humanistic theory, and trait theory, along with the influence of social cognitive and biological factors on personality development. You’ll get an overview of the different personality disorders, categorized into clusters like odd or eccentric behavior, dramatic or erratic behavior, and anxious or fearful behavior. You’ll also gain an understanding of specific disorders, including narcissistic personality disorder, antisocial personality disorder, and obsessive-compulsive personality disorder. Visit for more help with the MCAT. Jump into the conversation: (00:00) Intro (01:01) Introduction to Personality (01:41) Defining Personality (03:27) Overview of Personality Theories (06:11) Psychoanalytic Theory: Id, Ego, and Superego (09:03) Humanistic Theory: Achieving Individual Potential (10:16) Trait Theory: Stable Traits Over Time (11:06) Five-Factor Model of Personality (12:08) Social Cognitive Theory: Learning and Cognition (13:18) Biological Theory: Genetic Influences on Personality (15:10) Behaviorist Theory: Environmental Shaping of Personality (16:39) Introduction to Personality Disorders (19:19) Cluster A: Odd or Eccentric Behavior Disorders (22:26) Cluster B: Dramatic, Emotional, or Erratic Behavior Disorders (26:13) Cluster C: Anxious or Fearful Behavior Disorders (28:24) OCD vs. OCPD: Key Differences (29:40) Overlap Between Personality Disorder Clusters
/episode/index/show/mcatbasics/id/32773067
info_outline
Molecular Structure and Absorption Spectra
08/29/2024
Molecular Structure and Absorption Spectra
In this episode, we cover molecular structure and the key spectroscopy techniques you need to know for the MCAT. We'll explore the intricacies of Nuclear Magnetic Resonance spectroscopy, breaking down the chemical shifts and spin-splitting essentials for understanding hydrogen and carbon bonds in various compounds. You'll learn how to identify functional groups using Infrared (IR) spectroscopy and how mass spectrometry can help determine molecular weights and identify unknown compounds. We'll also touch on UV-Vis spectroscopy and its role in quantifying compounds based on absorption spectra. Visit for more help with the MCAT. (00:00) Intro (01:50) Introduction to absorption spectra and molecular structure (01:52) Absorption spectroscopy and its applications (03:39) IR spectroscopy: Analyzing functional groups with infrared radiation (07:57) Key IR peaks to know for the MCAT (09:52) Visible light and its role in determining compound color (10:57) UV-Vis spectroscopy: Connecting visible and ultraviolet light for compound analysis (14:06) Quantifying compounds using UV-Vis spectroscopy and Beer's Law (16:48) Mass spectrometry: Determining molecular weight and identifying compounds (22:18) Interpreting mass spectrometry graphs and calculating molecular weight (26:44) NMR spectroscopy: Understanding molecular structure through proton shifts (31:23) Key NMR shifts to know for the MCAT (33:21) Spin splitting in NMR and the n+1 rule
/episode/index/show/mcatbasics/id/32756492
info_outline
The Doppler Effect
08/27/2024
The Doppler Effect
The Doppler Effect is a crucial concept for the MCAT, particularly in the Chemistry & Physics section. We'll explore how the Doppler effect occurs when a wave source moves relative to an observer, affecting the observed frequency and wavelength. Using practical examples like an ambulance speeding towards you, we'll bring these concepts to life. We'll also break down the Doppler effect equation, examining what it reveals—and what it doesn’t—about wave behavior. By the end of this episode, you'll have a solid understanding of The Doppler effect and will be ready to tackle any related questions on the MCAT. Visit for more help with the MCAT. Jump into the conversation: (00:00) Introduction to the MCAT Basics (02:09) Conceptual Explanation of the Doppler Effect (03:55) Example: Doppler Effect with an ambulance (04:55) Speed of sound and wave propagation (05:31) Impact of ambulance motion on sound wave speed (06:37) Relationship between wave speed and frequency (07:30) Detailed explanation of sound frequency (08:45) Introduction to the Doppler Effect equation (10:08) Proportionality in the Doppler Effect equation (11:08) Discussion on wavelength and frequency relationship (12:29) Application of the Doppler Effect equation
/episode/index/show/mcatbasics/id/32707692