loader from loading.io

MLG 027 Hyperparameters 1

Machine Learning Guide

Release Date: 01/28/2018

MLG 036 Autoencoders show art MLG 036 Autoencoders

Machine Learning Guide

Auto encoders are neural networks that compress data into a smaller "code," enabling dimensionality reduction, data cleaning, and lossy compression by reconstructing original inputs from this code. Advanced auto encoder types, such as denoising, sparse, and variational auto encoders, extend these concepts for applications in generative modeling, interpretability, and synthetic data generation. Links Notes and resources at   - stay healthy & sharp while you learn & code Build the future of multi-agent software with . Thanks to  from  for recording...

info_outline
MLG 035 Large Language Models 2 show art MLG 035 Large Language Models 2

Machine Learning Guide

At inference, large language models use in-context learning with zero-, one-, or few-shot examples to perform new tasks without weight updates, and can be grounded with Retrieval Augmented Generation (RAG) by embedding documents into vector databases for real-time factual lookup using cosine similarity. LLM agents autonomously plan, act, and use external tools via orchestrated loops with persistent memory, while recent benchmarks like GPQA (STEM reasoning), SWE Bench (agentic coding), and MMMU (multimodal college-level tasks) test performance alongside prompt engineering techniques such as...

info_outline
MLG 034 Large Language Models 1 show art MLG 034 Large Language Models 1

Machine Learning Guide

Explains language models (LLMs) advancements. Scaling laws - the relationships among model size, data size, and compute - and how emergent abilities such as in-context learning, multi-step reasoning, and instruction following arise once certain scaling thresholds are crossed. The evolution of the transformer architecture with Mixture of Experts (MoE), describes the three-phase training process culminating in Reinforcement Learning from Human Feedback (RLHF) for model alignment, and explores advanced reasoning techniques such as chain-of-thought prompting which significantly improve complex...

info_outline
MLA 024 Code AI MCP Servers, ML Engineering show art MLA 024 Code AI MCP Servers, ML Engineering

Machine Learning Guide

Tool use in code AI agents allows for both in-editor code completion and agent-driven file and command actions, while the Model Context Protocol (MCP) standardizes how these agents communicate with external and internal tools. MCP integration broadens the automation capabilities for developers and machine learning engineers by enabling access to a wide variety of local and cloud-based tools directly within their coding environments. Links Notes and resources at  stay healthy & sharp while you learn & code Tool Use in Code AI Agents Code AI agents offer two primary modes of...

info_outline
MLA 023 Code AI Models & Modes show art MLA 023 Code AI Models & Modes

Machine Learning Guide

Gemini 2.5 Pro currently leads in both accuracy and cost-effectiveness among code-focused large language models, with Claude 3.7 and a DeepSeek R1/Claude 3.5 combination also performing well in specific modes. Using local open source models via tools like Ollama offers enhanced privacy but trades off model performance, and advanced workflows like custom modes and fine-tuning can further optimize development processes. Links Notes and resources at  stay healthy & sharp while you learn & code Model Current Leaders According to the  (as of April 12, 2025), leading...

info_outline
MLA 022 Code AI: Cursor, Cline, Roo, Aider, Copilot, Windsurf show art MLA 022 Code AI: Cursor, Cline, Roo, Aider, Copilot, Windsurf

Machine Learning Guide

Vibe coding is using large language models within IDEs or plugins to generate, edit, and review code, and has recently become a prominent and evolving technique in software and machine learning engineering. The episode outlines a comparison of current code AI tools - such as Cursor, Copilot, Windsurf, Cline, Roo Code, and Aider - explaining their architectures, capabilities, agentic features, pricing, and practical recommendations for integrating them into development workflows. Links Notes and resources at   stay healthy & sharp while you learn & code Definition and...

info_outline
MLG 033 Transformers show art MLG 033 Transformers

Machine Learning Guide

Links: Notes and resources at 3Blue1Brown videos:   stay healthy & sharp while you learn & code  audio/video editing with AI power-tools Background & Motivation RNN Limitations: Sequential processing prevents full parallelization—even with attention tweaks—making them inefficient on modern hardware. Breakthrough: “Attention Is All You Need” replaced recurrence with self-attention, unlocking massive parallelism and scalability. Core Architecture Layer Stack: Consists of alternating self-attention and feed-forward (MLP) layers, each wrapped...

info_outline
MLA 021 Databricks: Cloud Analytics and MLOps show art MLA 021 Databricks: Cloud Analytics and MLOps

Machine Learning Guide

Databricks is a cloud-based platform for data analytics and machine learning operations, integrating features such as a hosted Spark cluster, Python notebook execution, Delta Lake for data management, and seamless IDE connectivity. Raybeam utilizes Databricks and other ML Ops tools according to client infrastructure, scaling needs, and project goals, favoring Databricks for its balanced feature set, ease of use, and support for both startups and enterprises. Links Notes and resources at   stay healthy & sharp while you learn & code Raybeam and Databricks Raybeam is a...

info_outline
MLA 020 Kubeflow and ML Pipeline Orchestration on Kubernetes show art MLA 020 Kubeflow and ML Pipeline Orchestration on Kubernetes

Machine Learning Guide

Machine learning pipeline orchestration tools, such as SageMaker and Kubeflow, streamline the end-to-end process of data ingestion, model training, deployment, and monitoring, with Kubeflow providing an open-source, cross-cloud platform built atop Kubernetes. Organizations typically choose between cloud-native managed services and open-source solutions based on required flexibility, scalability, integration with existing cloud environments, and vendor lock-in considerations. Links Notes and resources at   stay healthy & sharp while you learn & code  - Data Scientist...

info_outline
MLA 019 Cloud, DevOps & Architecture show art MLA 019 Cloud, DevOps & Architecture

Machine Learning Guide

The deployment of machine learning models for real-world use involves a sequence of cloud services and architectural choices, where machine learning expertise must be complemented by DevOps and architecture skills, often requiring collaboration with professionals. Key concepts discussed include infrastructure as code, cloud container orchestration, and the distinction between DevOps and architecture, as well as practical advice for machine learning engineers wanting to deploy products securely and efficiently. Links Notes and resources at   stay healthy & sharp while you learn...

info_outline
 
More Episodes

Full notes and resources at  ocdevel.com/mlg/27 

Try a walking desk to stay healthy while you study or work!

Hyperparameters are crucial elements in the configuration of machine learning models. Unlike parameters, which are learned by the model during training, hyperparameters are set by humans before the learning process begins. They are the knobs and dials that humans can control to influence the training and performance of machine learning models.

Definition and Importance

Hyperparameters differ from parameters like theta in linear and logistic regression, which are learned weights. They are choices made by humans, such as the type of model, number of neurons in a layer, or the model architecture. These choices can have significant effects on the model's performance, making them vital to conscious and informed tuning.

Types of Hyperparameters

Model Selection:

Choosing what model to use is itself a hyperparameter. For example, deciding between linear regression, logistic regression, naive Bayes, or neural networks.

Architecture of Neural Networks:

  • Number of Layers and Neurons: Deciding the width (number of neurons) and depth (number of layers).
  • Types of Layers: Whether to use LSTMs, convolutional layers, or dense layers.

Activation Functions:

They transform linear outputs into non-linear outputs. Popular choices include ReLU, tanh, and sigmoid, with ReLU being the default for most neural network layers.

Regularization and Optimization:

These influence the learning process. The use of L1/L2 regularization or dropout, as well as the type of optimizer (e.g., Adam, Adagrad), are hyperparameters.

Optimization Techniques

Techniques like grid search, random search, and Bayesian optimization are used to systematically explore combinations of hyperparameters to find the best configuration for a given task. While these methods can be computationally expensive, they are necessary for achieving optimal model performance.

Challenges and Future Directions

The field strives towards simplifying the choice of hyperparameters, ideally automating them to become parameters of the model itself. Efforts like Google's AutoML aim to handle hyperparameter tuning automatically.

Understanding and optimizing hyperparameters is a cornerstone in machine learning, directly impacting the effectiveness and efficiency of a model. Progress continues to integrate these choices into model training, reducing the dependency on human intervention and trial-and-error experimentation.

Decision Tree

  • Model selection
    • Unsupervised? K-means Clustering => DL
    • Linear? Linear regression, logistic regression
    • Simple? Naive Bayes, Decision Tree (Random Forest, Gradient Boosting)
    • Little data? Boosting
    • Lots of data, complex situation? Deep learning
  • Network
    • Layer arch
      • Vision? CNN
      • Time? LSTM
      • Other? MLP
      • Trading LSTM => CNN decision
    • Layer size design (funnel, etc)
      • Face pics
      • From BTC episode
      • Don't know? Layers=1, Neurons=mean(inputs, output) link
  • Activations / nonlinearity
    • Output
      • Sigmoid = predict probability of output, usually at output
      • Softmax = multi-class
      • Nothing = regression
    • Relu family (Leaky Relu, Elu, Selu, ...) = vanishing gradient (gradient is constant), performance, usually better
    • Tanh = classification between two classes, mean 0 important