Machine Learning Guide
At inference, large language models use in-context learning with zero-, one-, or few-shot examples to perform new tasks without weight updates, and can be grounded with Retrieval Augmented Generation (RAG) by embedding documents into vector databases for real-time factual lookup using cosine similarity. LLM agents autonomously plan, act, and use external tools via orchestrated loops with persistent memory, while recent benchmarks like GPQA (STEM reasoning), SWE Bench (agentic coding), and MMMU (multimodal college-level tasks) test performance alongside prompt engineering techniques such as...
info_outlineMachine Learning Guide
Explains language models (LLMs) advancements. Scaling laws - the relationships among model size, data size, and compute - and how emergent abilities such as in-context learning, multi-step reasoning, and instruction following arise once certain scaling thresholds are crossed. The evolution of the transformer architecture with Mixture of Experts (MoE), describes the three-phase training process culminating in Reinforcement Learning from Human Feedback (RLHF) for model alignment, and explores advanced reasoning techniques such as chain-of-thought prompting which significantly improve complex...
info_outlineMachine Learning Guide
Tool use in code AI agents allows for both in-editor code completion and agent-driven file and command actions, while the Model Context Protocol (MCP) standardizes how these agents communicate with external and internal tools. MCP integration broadens the automation capabilities for developers and machine learning engineers by enabling access to a wide variety of local and cloud-based tools directly within their coding environments. Links Notes and resources at stay healthy & sharp while you learn & code Tool Use in Code AI Agents Code AI agents offer two primary modes of...
info_outlineMachine Learning Guide
Gemini 2.5 Pro currently leads in both accuracy and cost-effectiveness among code-focused large language models, with Claude 3.7 and a DeepSeek R1/Claude 3.5 combination also performing well in specific modes. Using local open source models via tools like Ollama offers enhanced privacy but trades off model performance, and advanced workflows like custom modes and fine-tuning can further optimize development processes. Links Notes and resources at stay healthy & sharp while you learn & code Model Current Leaders According to the (as of April 12, 2025), leading...
info_outlineMachine Learning Guide
Vibe coding is using large language models within IDEs or plugins to generate, edit, and review code, and has recently become a prominent and evolving technique in software and machine learning engineering. The episode outlines a comparison of current code AI tools - such as Cursor, Copilot, Windsurf, Cline, Roo Code, and Aider - explaining their architectures, capabilities, agentic features, pricing, and practical recommendations for integrating them into development workflows. Links Notes and resources at stay healthy & sharp while you learn & code Definition and...
info_outlineMachine Learning Guide
Links: Notes and resources at 3Blue1Brown videos: stay healthy & sharp while you learn & code audio/video editing with AI power-tools Background & Motivation RNN Limitations: Sequential processing prevents full parallelization—even with attention tweaks—making them inefficient on modern hardware. Breakthrough: “Attention Is All You Need” replaced recurrence with self-attention, unlocking massive parallelism and scalability. Core Architecture Layer Stack: Consists of alternating self-attention and feed-forward (MLP) layers, each wrapped...
info_outlineMachine Learning Guide
Databricks is a cloud-based platform for data analytics and machine learning operations, integrating features such as a hosted Spark cluster, Python notebook execution, Delta Lake for data management, and seamless IDE connectivity. Raybeam utilizes Databricks and other ML Ops tools according to client infrastructure, scaling needs, and project goals, favoring Databricks for its balanced feature set, ease of use, and support for both startups and enterprises. Links Notes and resources at stay healthy & sharp while you learn & code Raybeam and Databricks Raybeam is a...
info_outlineMachine Learning Guide
Machine learning pipeline orchestration tools, such as SageMaker and Kubeflow, streamline the end-to-end process of data ingestion, model training, deployment, and monitoring, with Kubeflow providing an open-source, cross-cloud platform built atop Kubernetes. Organizations typically choose between cloud-native managed services and open-source solutions based on required flexibility, scalability, integration with existing cloud environments, and vendor lock-in considerations. Links Notes and resources at stay healthy & sharp while you learn & code - Data Scientist...
info_outlineMachine Learning Guide
The deployment of machine learning models for real-world use involves a sequence of cloud services and architectural choices, where machine learning expertise must be complemented by DevOps and architecture skills, often requiring collaboration with professionals. Key concepts discussed include infrastructure as code, cloud container orchestration, and the distinction between DevOps and architecture, as well as practical advice for machine learning engineers wanting to deploy products securely and efficiently. Links Notes and resources at stay healthy & sharp while you learn...
info_outlineMachine Learning Guide
AWS development environments for local and cloud deployment can differ significantly, leading to extra complexity and setup during cloud migration. By developing directly within AWS environments, using tools such as Lambda, Cloud9, SageMaker Studio, client VPN connections, or LocalStack, developers can streamline transitions to production and leverage AWS-managed services from the start. This episode outlines three primary strategies for treating AWS as your development environment, details the benefits and tradeoffs of each, and explains the role of infrastructure-as-code tools such as...
info_outlineLinks:
- Notes and resources at ocdevel.com/mlg/33
- 3Blue1Brown videos: https://3blue1brown.com/
- Try a walking desk stay healthy & sharp while you learn & code
- Try Descript audio/video editing with AI power-tools
Background & Motivation
- RNN Limitations: Sequential processing prevents full parallelization—even with attention tweaks—making them inefficient on modern hardware.
- Breakthrough: “Attention Is All You Need” replaced recurrence with self-attention, unlocking massive parallelism and scalability.
Core Architecture
- Layer Stack: Consists of alternating self-attention and feed-forward (MLP) layers, each wrapped in residual connections and layer normalization.
- Positional Encodings: Since self-attention is permutation invariant, add sinusoidal or learned positional embeddings to inject sequence order.
Self-Attention Mechanism
- Q, K, V Explained:
- Query (Q): The representation of the token seeking contextual info.
- Key (K): The representation of tokens being compared against.
- Value (V): The information to be aggregated based on the attention scores.
- Multi-Head Attention: Splits Q, K, V into multiple “heads” to capture diverse relationships and nuances across different subspaces.
- Dot-Product & Scaling: Computes similarity between Q and K (scaled to avoid large gradients), then applies softmax to weigh V accordingly.
Masking
- Causal Masking: In autoregressive models, prevents a token from “seeing” future tokens, ensuring proper generation.
- Padding Masks: Ignore padded (non-informative) parts of sequences to maintain meaningful attention distributions.
Feed-Forward Networks (MLPs)
- Transformation & Storage: Post-attention MLPs apply non-linear transformations; many argue they’re where the “facts” or learned knowledge really get stored.
- Depth & Expressivity: Their layered nature deepens the model’s capacity to represent complex patterns.
Residual Connections & Normalization
- Residual Links: Crucial for gradient flow in deep architectures, preventing vanishing/exploding gradients.
- Layer Normalization: Stabilizes training by normalizing across features, enhancing convergence.
Scalability & Efficiency Considerations
- Parallelization Advantage: Entire architecture is designed to exploit modern parallel hardware, a huge win over RNNs.
- Complexity Trade-offs: Self-attention’s quadratic complexity with sequence length remains a challenge; spurred innovations like sparse or linearized attention.
Training Paradigms & Emergent Properties
- Pretraining & Fine-Tuning: Massive self-supervised pretraining on diverse data, followed by task-specific fine-tuning, is the norm.
- Emergent Behavior: With scale comes abilities like in-context learning and few-shot adaptation, aspects that are still being unpacked.
Interpretability & Knowledge Distribution
- Distributed Representation: “Facts” aren’t stored in a single layer but are embedded throughout both attention heads and MLP layers.
- Debate on Attention: While some see attention weights as interpretable, a growing view is that real “knowledge” is diffused across the network’s parameters.