Machine Learning Guide
At inference, large language models use in-context learning with zero-, one-, or few-shot examples to perform new tasks without weight updates, and can be grounded with Retrieval Augmented Generation (RAG) by embedding documents into vector databases for real-time factual lookup using cosine similarity. LLM agents autonomously plan, act, and use external tools via orchestrated loops with persistent memory, while recent benchmarks like GPQA (STEM reasoning), SWE Bench (agentic coding), and MMMU (multimodal college-level tasks) test performance alongside prompt engineering techniques such as...
info_outlineMachine Learning Guide
Explains language models (LLMs) advancements. Scaling laws - the relationships among model size, data size, and compute - and how emergent abilities such as in-context learning, multi-step reasoning, and instruction following arise once certain scaling thresholds are crossed. The evolution of the transformer architecture with Mixture of Experts (MoE), describes the three-phase training process culminating in Reinforcement Learning from Human Feedback (RLHF) for model alignment, and explores advanced reasoning techniques such as chain-of-thought prompting which significantly improve complex...
info_outlineMachine Learning Guide
Tool use in code AI agents allows for both in-editor code completion and agent-driven file and command actions, while the Model Context Protocol (MCP) standardizes how these agents communicate with external and internal tools. MCP integration broadens the automation capabilities for developers and machine learning engineers by enabling access to a wide variety of local and cloud-based tools directly within their coding environments. Links Notes and resources at stay healthy & sharp while you learn & code Tool Use in Code AI Agents Code AI agents offer two primary modes of...
info_outlineMachine Learning Guide
Gemini 2.5 Pro currently leads in both accuracy and cost-effectiveness among code-focused large language models, with Claude 3.7 and a DeepSeek R1/Claude 3.5 combination also performing well in specific modes. Using local open source models via tools like Ollama offers enhanced privacy but trades off model performance, and advanced workflows like custom modes and fine-tuning can further optimize development processes. Links Notes and resources at stay healthy & sharp while you learn & code Model Current Leaders According to the (as of April 12, 2025), leading...
info_outlineMachine Learning Guide
Vibe coding is using large language models within IDEs or plugins to generate, edit, and review code, and has recently become a prominent and evolving technique in software and machine learning engineering. The episode outlines a comparison of current code AI tools - such as Cursor, Copilot, Windsurf, Cline, Roo Code, and Aider - explaining their architectures, capabilities, agentic features, pricing, and practical recommendations for integrating them into development workflows. Links Notes and resources at stay healthy & sharp while you learn & code Definition and...
info_outlineMachine Learning Guide
Links: Notes and resources at 3Blue1Brown videos: stay healthy & sharp while you learn & code audio/video editing with AI power-tools Background & Motivation RNN Limitations: Sequential processing prevents full parallelization—even with attention tweaks—making them inefficient on modern hardware. Breakthrough: “Attention Is All You Need” replaced recurrence with self-attention, unlocking massive parallelism and scalability. Core Architecture Layer Stack: Consists of alternating self-attention and feed-forward (MLP) layers, each wrapped...
info_outlineMachine Learning Guide
Databricks is a cloud-based platform for data analytics and machine learning operations, integrating features such as a hosted Spark cluster, Python notebook execution, Delta Lake for data management, and seamless IDE connectivity. Raybeam utilizes Databricks and other ML Ops tools according to client infrastructure, scaling needs, and project goals, favoring Databricks for its balanced feature set, ease of use, and support for both startups and enterprises. Links Notes and resources at stay healthy & sharp while you learn & code Raybeam and Databricks Raybeam is a...
info_outlineMachine Learning Guide
Machine learning pipeline orchestration tools, such as SageMaker and Kubeflow, streamline the end-to-end process of data ingestion, model training, deployment, and monitoring, with Kubeflow providing an open-source, cross-cloud platform built atop Kubernetes. Organizations typically choose between cloud-native managed services and open-source solutions based on required flexibility, scalability, integration with existing cloud environments, and vendor lock-in considerations. Links Notes and resources at stay healthy & sharp while you learn & code - Data Scientist...
info_outlineMachine Learning Guide
The deployment of machine learning models for real-world use involves a sequence of cloud services and architectural choices, where machine learning expertise must be complemented by DevOps and architecture skills, often requiring collaboration with professionals. Key concepts discussed include infrastructure as code, cloud container orchestration, and the distinction between DevOps and architecture, as well as practical advice for machine learning engineers wanting to deploy products securely and efficiently. Links Notes and resources at stay healthy & sharp while you learn...
info_outlineMachine Learning Guide
AWS development environments for local and cloud deployment can differ significantly, leading to extra complexity and setup during cloud migration. By developing directly within AWS environments, using tools such as Lambda, Cloud9, SageMaker Studio, client VPN connections, or LocalStack, developers can streamline transitions to production and leverage AWS-managed services from the start. This episode outlines three primary strategies for treating AWS as your development environment, details the benefits and tradeoffs of each, and explains the role of infrastructure-as-code tools such as...
info_outlineNotes and resources: ocdevel.com/mlg/28
Try a walking desk to stay healthy while you study or work!
More hyperparameters for optimizing neural networks. A focus on regularization, optimizers, feature scaling, and hyperparameter search methods.
Hyperparameter Search Techniques
- Grid Search involves testing all possible permutations of hyperparameters, but is computationally exhaustive and suited for simpler, less time-consuming models.
- Random Search selects random combinations of hyperparameters, potentially saving time while potentially missing the optimal solution.
- Bayesian Optimization employs machine learning to continuously update and hone in on efficient hyperparameter combinations, avoiding the exhaustive or random nature of grid and random searches.
Regularization in Neural Networks
- L1 and L2 Regularization penalize certain parameter configurations to prevent model overfitting; often smoothing overfitted parameters.
- Dropout randomly deactivates neurons during training to ensure the model doesn’t over-rely on specific neurons, fostering better generalization.
Optimizers
- Optimizers like Adam, which combines elements of momentum and adaptive learning rates, are explained as vital tools for refining the learning process of neural networks.
- Adam, being the most sophisticated and commonly used optimizer, improves upon simpler techniques like momentum by incorporating more advanced adaptative features.
Initializers
- The importance of weight initialization is underscored with methods like uniform random initialization and the more advanced Xavier initialization to prevent neural networks from starting in 'stuck' states.
Feature Scaling
- Different scaling methods such as standardization and normalization are used to scale feature inputs to small, standardized ranges.
- Batch Normalization is highlighted, integrating scaling directly into the network to prevent issues like exploding and vanishing gradients through the normalization of layer outputs.