Many Minds
Are human emotions universal? Or do they vary from one place to the next and from one time period to the next? It's a big question, an old question. And every discipline that's grappled with it brings is own take, its own framings and forms of evidence. Some researchers appeal to cross-cultural experiments; others turn to neuroimaging studies or conceptual analysis. Some even look to fiction. My guest today is , an Associate Professor of English Literature at Arizona State University. Brad is the author of a new book, ; in it he maps the landscape of debate around this long-contested topic....
info_outlineMany Minds
Hi friends, We're taking care of some spring cleaning this week. We'll be back in two weeks with a new episode. In the meantime, enjoy this favorite from our archives! - The Many Minds team ––––––––– [originally aired February 22, 2024] Brains are not cheap. It takes a lot of calories to run a brain, and the bigger your brain, the more calories it takes. So how is it that, over the last couple million years, the human brain tripled in size. How could we possibly have afforded that? Where did the extra calories come from? There's no shortage of suggestions out there. Some say...
info_outlineMany Minds
The tree of life is a noisy place. From one branch come hoots and howls, from another come clicks and buzzes and whines. And coming from all over you hear the swell of song. But what is all this ruckus about? Why do so many animals communicate with sound? What kinds of meaning do these sounds convey? And—beyond the case of human speech—do any of these sounds merit the label of “language”? My guest today is , a zoologist at Cambridge University. Arik is an expert on vocal communication across the animal kingdom and the author of the recent book . Here, Arik and I talk about why the...
info_outlineMany Minds
Evolution is not what it used to be. A lot has changed since Darwin's day. In the first half of the 20th century, evolutionary theory was integrated with an emerging understanding of genetics. Late in the 20th century, biologists started taking seriously the idea that organisms don't just adapt to their environments, they change them. Recently, researchers have started to acknowledge the role of culture in evolutionary processes. And so slowly our understanding of evolution has been reconsidered, updated, expanded. And more updates are underway. But it's not just our understanding of evolution...
info_outlineMany Minds
Where would our species be without string? It's one of our most basic technologies—so basic that it's easy to overlook. But humans have used string—and its cousins rope, yarn, cordage, thread, etc.—for all kinds of purposes, stretching back tens of thousands of years. We've used it for knots and textiles and fishing nets and carrier bags and bow-strings and record-keeping devices. It's one of the most ubiquitous, flexible, and useful technologies we have. But we haven't only put string to practical purposes. We've also long used it to tickle our minds. My guest today is . Roope is a...
info_outlineMany Minds
Neurons have long enjoyed a kind of rock star status. We think of them as the most fundamental units of the brain—the active cells at the heart of brain function and, ultimately, at the heart of behavior, learning, and more. But neurons are only part of the story—about half the story, it turns out. The other half of the brain is made up of cells called glia. Glia were long thought to be important structurally but not particularly exciting—basically stage-hands there to support the work of the neurons. But in recent decades, at least among neuroscientists, that view has faded. In our...
info_outlineMany Minds
How do we learn? Usually from experience, of course. Maybe we visit some new place, or encounter a new tool or trick. Or perhaps we learn from someone else—from a teacher or friend or YouTube star who relays some shiny new fact or explanation. These are the kinds of experiences you probably first think of when you think of learning. But we can also learn in another way: simply by thinking. Sometimes we can just set our minds to work—just let the ideas already in our heads tumble around and spark off each other—and, as if by magic, come away with a new understanding of the world. But how...
info_outlineMany Minds
Happy holidays, friends! We will be back with a new episode in January 2025. In the meantime, enjoy this favorite from our archives! ----- [originally aired Jun 14, 2023] Have you heard of Octopolis? It’s a site off the coast of Australia where octopuses come together. It’s been described as a kind of underwater "settlement" or "city." Now, smart as octopuses are, they are not really known for being particularly sociable. But it seems that, given the right conditions, they can shift in that direction. So it's not a huge leap to wonder whether these kinds of cephalopod congregations could...
info_outlineMany Minds
Using language is a complex business. Let's say you want to understand a sentence. You first need to parse a sequence of sounds—if the sentence is spoken—or images—if it's signed or written. You need to figure out the meanings of the individual words and then you need to put those meanings together to form a bigger whole. Of course, you also need to think about the larger context—the conversation, the person you're talking to, the kind of situation you're in. So how does the brain do all of this? Is there just one neural system that deals with language or several? Do different...
info_outlineMany Minds
How do birds build their nests? By instinct, of course—at least that's what the conventional wisdom tells us. A swallow builds a swallow's nest; a robin builds a robin's nest. Every bird just follows the rigid template set down in its genes. But over the course of the last couple of decades, scientists have begun to take a closer look at nests—they've weighed and measured them, they've filmed the building process. And the conventional wisdom just doesn't hold up. These structures vary in all kinds of ways, even within a species. They're shaped by experience, by learning, by cultural...
info_outlineUsing language is a complex business. Let's say you want to understand a sentence. You first need to parse a sequence of sounds—if the sentence is spoken—or images—if it's signed or written. You need to figure out the meanings of the individual words and then you need to put those meanings together to form a bigger whole. Of course, you also need to think about the larger context—the conversation, the person you're talking to, the kind of situation you're in. So how does the brain do all of this? Is there just one neural system that deals with language or several? Do different parts of the brain care about different aspects of language? And, more basically: What scientific tools and techniques should we be using to try to figure this all out?
My guest today is Dr. Ev Fedorenko. Ev is a cognitive neuroscientist at MIT, where she and her research group study how the brains supports language and complex thought. Ev and her colleagues recently wrote a detailed overview of their work on the language network—the specialized system in our brain that underlies our ability to use language. This network has some features you might have expected, and—as we’ll see—other features you probably didn't.
Here, Ev and I talk about the history of our effort to understand the neurobiology of language. We lay out the current understanding of the language network, and its relationship to the brain areas historically associated with language abilities—especially Broca's area and Wernicke's area. We talk about whether the language network can be partitioned according to the subfields of linguistics, such as syntax and semantics. We discuss the power and limitations of fMRI, and the advantages of the single-subject analyses that Ev and her lab primarily use. We consider how the language network interfaces with other major neural networks—for instance, the theory of mind network and the so-called default network. And we discuss what this all tells us about the longstanding controversial claim that language is primarily for thinking rather than communicating.
Along the way, Ev and I touch on: some especially interesting brains; plasticity and redundancy; the puzzle of lateralization; polyglots; aphasia; the localizer method; the decline of certain Chomskyan perspectives; the idea that brain networks are "natural kinds"; the heart of the language network; and the question of what the brain may tell us—if anything—about how language evolved.
Alright friends, this is a fun one. On to my conversation with Dr. Ev Fedorenko. Enjoy!
A transcript of this episode is available here.
Notes and links
3:00 – The article by a New York Times reporter who is missing a portion of her temporal lobe. The website for the Interesting Brains project.
5:30 – A recent paper from Dr. Fedorenko’s lab on the brains of three siblings, two of whom were missing portions of their brains.
13:00 – Broca’s original 1861 report.
18:00 – Many of Noam Chomsky’s ideas about the innateness of language and the centrality of syntax are covered in his book Language and Mind, among other publications.
19:30 – For an influential critique of the tradition of localizing functions in the brain, see William R. Uttal’s The New Phrenology.
23:00 – The new review paper by Dr. Fedorenko and colleagues on the language network.
26:00 – For more discussion of the different formats or modalities of language, see our earlier episode with Dr. Neil Cohn.
30:00 – A classic paper by Herbert Simon on the “architecture of complexity.”
31:00 – For one example of a naturalistic, “task-free” study that reveals the brain’s language network, see here.
33:30 – See the recent paper arguing “against cortical reorganization.”
33:00 – For more on the concept of “natural kind” in philosophy, see here.
38:00 – On the “multiple-demand network,” see a recent study by Dr. Fedorenko and colleagues.
41:00 – For a study from Dr. Fedorenko’s lab finding that syntax and semantics are distributed throughout the language network, see here. For an example of work in linguistics that does not make a tidy distinction between syntax and semantics, see here.
53:30 – See Dr. Fedorenko’s recent article on the history of individual-subject analyses in neuroscience.
1:01:00 – For an in-depth treatment of one localizer used in Dr. Fedorenko’s research, see here.
1:03:30 – A paper by Dr. Stephen Wilson and colleagues, describing recovery of language ability following stroke as a function of the location of the lesion within the language network.
1:04:20 – A paper from Dr. Fedorenko’s lab on the small language networks of polyglots.
1:09:00 – For more on the Visual Word Form Area (or VWFA), see here. For discussion of Exner’s Area, see here.
1:14:30 – For a discussion of the brain’s so-called default network, see here.
1:17:00 – See here for Dr. Fedorenko and colleagues’ recent paper on the function of language. For more on the question of what language is for, see our earlier episode with Dr. Nick Enfield.
1:19:00 – A paper by Dr. Fedorenko and Dr. Rosemary Varley arguing for intact thinking ability in patients with aphasia.
1:22:00 – A recent paper on individual differences in the experience of inner speech.
Recommendations
Dr. Ted Gibson’s book on syntax (forthcoming with MIT press)
Nancy Kanwisher, ‘Functional specificity in the human brain’
Many Minds is a project of the Diverse Intelligences Summer Institute, which is made possible by a generous grant from the John Templeton Foundation to Indiana University. The show is hosted and produced by Kensy Cooperrider, with help from Assistant Producer Urte Laukaityte and with creative support from DISI Directors Erica Cartmill and Jacob Foster. Our artwork is by Ben Oldroyd. Our transcripts are created by Sarah Dopierala.
Subscribe to Many Minds on Apple, Stitcher, Spotify, Pocket Casts, Google Play, or wherever you listen to podcasts. You can also now subscribe to the Many Minds newsletter here!
We welcome your comments, questions, and suggestions. Feel free to email us at: [email protected].
For updates about the show, visit our website or follow us on Twitter (@ManyMindsPod) or Bluesky (@manymindspod.bsky.social).