MTD Audiobook
Over 80% of the UK’s SMEs believe apprenticeships are at least partly the solution to the UK’s skills gap crisis, with a further 69% of the view apprenticeships are a ‘valuable alternative to university’ Four in 10 (44%) feel not enough is being done to encourage young people to consider apprenticeships. The findings are taken from the latest independent research commissioned by Close Brothers Asset Finance and are in support of National Apprenticeship Week (NAW), which highlights the positive impact that apprenticeships make on individuals, businesses and the wider economy....
info_outlineMTD Audiobook
Edging closer to its 50th anniversary, the Progressive Technology Group has enjoyed a meteoric rise over the last decade. Founded in 1977, the relocation to larger premises in 2013 was one of the many catalysts for the Newbury company’s decade-long growth. Opening multiple new divisions and branching into new markets, the company now employs more than 250 staff. Among its accolades are many prestigious awards from AMG Petronas and Rolls-Royce, to name a few. However, this pedigree cannot be bought; it is embedded in the company’s culture, with Progressive Technology opening its Apprentice...
info_outlineMTD Audiobook
The Brough Superior, a classic British motorcycle designed by George Brough in 1919 and manufactured in Nottingham, was of such high quality that it was dubbed the Rolls-Royce of motorcycles. One famous customer, T.E. Lawrence (Lawrence of Arabia), owned eight and died in 1935 from injuries sustained when he crashed number seven. The design was beautiful and practical, and a sidecar was often added. Although the factory closed after the Second World War, enthusiasts have ensured the name survives. In 2004, around 1,000 original Brough Superior motorcycles still existed. The brand is regularly...
info_outlineMTD Audiobook
Difficult-to-cut materials are defined as engineering materials with significantly lower machinability than typical. These materials are often referred to in shoptalk as ‘hard-to-machine,’ ‘tough-to-cut,’ or even ‘nasty.’ It is important to note that high hardness is not the only characteristic that makes these materials challenging to machine; several other factors contribute to their machining difficulties. Every industrial branch, in one way or another, must deal with such materials. However, the leading consumer of these materials is the aerospace industry. It is in this...
info_outlineMTD Audiobook
Building on the success of their award-winning 3D-printed stator bore tool for electric vehicle machining, Kennametal has developed an innovative 3D-printed transmission housing tool for Voith that cuts weight by approximately 45% and reduces machining time by approximately 50%. As transportation components become increasingly more sophisticated and the requirements more stringent, manufacturers need complex tooling solutions to machine those components. That poses a challenge as the weight of such tooling can become too heavy for efficient operation on machining centres, tool changers and...
info_outlineMTD Audiobook
The electrification transition and inflexible EV production quotas are taking a heavy toll on the automotive industry, but buses and commercial vehicles posted their best years since 2008. Will Stirling reports. MTD magazine is unwaveringly positive in its coverage of manufacturing news, but facts are facts: automotive manufacturing is on a downward slide. Combining cars and commercial vehicles (CVs), the UK produced 905,233 units in 2024, -11.8% from 2023, and slipping below the psychologically important one million units mark. Electric vehicles now comprise over one-fifth of all new car...
info_outlineMTD Audiobook
Opening its doors with just four toolmakers 50 years ago, Smithstown Light Engineering Ltd is now a business with three manufacturing sites and over 165 employees. Working with the world’s leading medical device and orthopaedic companies, Smithstown extensively uses OPEN MIND Technologies‘ hyperMILL CAD/CAM suite to streamline its throughput and maximise efficiency. Initially a toolmaking business supplying plastic injection moulds to the electronics industry, the Shannon-based business transitioned to medical manufacturing in 1990—and it hasn’t looked back since. With two sites in...
info_outlineMTD Audiobook
Michael Phillips, joint owner with partner Wayne Robins of contract machining firm Atomic Precision, describes their recently purchased, Japanese-built Brother Speedio U500Xd1 as ‘a Swiss army knife of 5-axis machining centres.’ His comment is due to the 30-taper machine’s high quality, versatile functionality, compactness, and ability to complete an extensive range of jobs quickly and efficiently. Brother machines are sold and serviced in the UK and Ireland by Whitehouse Machine Tools, Kenilworth. Founded in East Hendred, Oxfordshire, in 2020 by the two time-served mechanical...
info_outlineMTD Audiobook
Engines were already being built at the site in Zafra in 1875, where DEUTZ today has its main factory for processing engine components. Around 500 employees in modern manufacturing facilities produce engine blocks, cylinder blocks, connecting rods, and gears for the Group’s assembly lines in Cologne and Ulm. DEUTZ’s new 3.9-litre diesel engine is mostly used in agricultural and construction machines. It is designed for long service life as an industrial engine and will be built until at least 2035. Series production will start in the coming year after the current prototype phase....
info_outlineMTD Audiobook
Mills CNC has recently supplied Ayrshire Precision, a subcontract specialist based in Ayrshire, with two new SYNERGi systems. The systems, both derivations and highly customised versions of Mills’ standard SYNERGi ‘SPRINT’ solutions, were installed at Ayrshire Precision’s 14,000sq/ft site. In 2023, the first system was retrofitted to a Puma 2600SY lathe, and six months later, the second was retrofitted to a Puma 2100SY. SYNERGi Sprint automation systems are compact, flexible, and cost-effective. Mills’ dedicated automation experts can integrate them with DN Solutions’ lathes,...
info_outlineBuilding on the success of their award-winning 3D-printed stator bore tool for electric vehicle machining, Kennametal has developed an innovative 3D-printed transmission housing tool for Voith that cuts weight by approximately 45% and reduces machining time by approximately 50%.
As transportation components become increasingly more sophisticated and the requirements more stringent, manufacturers need complex tooling solutions to machine those components. That poses a challenge as the weight of such tooling can become too heavy for efficient operation on machining centres, tool changers and tool magazines. Machine operators may also have difficulty managing the tool.
A recent collaboration by Kennametal, an industrial technology leader, and Voith, a leading supplier of drive technologies, shows how 3D printing offers a pathway to novel, lighter-weight tooling solutions that overcome these challenges while improving productivity and efficiency.
The Challenge: Machine multiple, tight tolerance, large diameter bores with
existing machining centres
Voith wanted an innovative solution to optimise its machining processes for transmission housings further. To achieve the required tolerances, the company needed a multi-stage tool capable of machining multiple bores in one operation. The tool also needed to have two effective cutting edges on the main diameters to achieve the specified cycle time. Finally, the tool had to weigh less than 12kg to meet the requirements for tool changing and tilting moment on the toolchain.
“Finish machining a large aluminium housing with multiple bores up to 350mm and IT7 tolerance grade is a demanding application,” said Werner Penkert, Manager of Product Engineering. “To machine these large bores with such tight tolerances, we need very rigid tools, which typically means they are heavy weight. When manufactured using conventional methods, a typical tooling solution for this type of application could weigh as much as 25kg, which is too heavy for the existing machines or for an operator working with the tool.”
Intrigued by how Kennametal leveraged 3D printing to produce a lighter-weight stator bore tool for electric vehicle machining, the Voith team turned to the industrial technology leader to collaborate on a solution.
“Kennametal’s innovative approach with 3D printing excited and inspired us to take this path together,” says Friedrich Oberländer, Director of Production Technology at Voith.
The solution
As with the stator bore tool, Kennametal leveraged its expertise in metal additive manufacturing—plus the concept of generative design to meet the demanding requirements of Voith’s transmission tool.
With conventional subtractive manufacturing, weight is reduced by removing excess material. However, with 3D printing, manufacturers can start with nothing and put material only where it is needed, resulting in lighter-weight, more complex geometries not possible via conventional manufacturing processes.
To fully leverage additive manufacturing’s design freedom, Kennametal used generative design, an iterative process that optimises the design of 3D-printed parts to meet an application-specific set of constraints. The generative design process often results in complex, organic shapes reminiscent of natural structures.
In the case of the Voith tool, generative design directly addressed machining forces on the tool, enabling Kennametal to design a solution optimised for stability, stiffness, balancing and coolant supply—with a weight of just 11.5kg.
Kennametal applied its expertise in additive manufacturing and machining to produce the tool. The tool pockets are precision machined and designed to be used in combination with Kennametal’s proven RIQ inserts technology.
“Additive is one tool in our toolbox, but we also applied our deep expertise in precision machining to develop a novel solution that efficiently addresses the challenges of boring deep holes in conjunction with multiple large diameters,” Penkert.
The design of Kennametal’s 3D-printed transmission housing tool mimics the organic shapes found in nature, delivering reduced weight and a 50% reduction in machining time for the customer, Voith.
The Results: 50% reduction in machining time
Working in close collaboration with Voith, Kennametal manufactured a prototype tool and put it to the test in its demonstration centre in Fürth, Germany—part of a global network of test and demonstration centres where the company works with customers to design, iterate and validate machining solutions.
This solution was particularly challenging in achieving both manufacturing and part quality requirements. Design simulation, additive manufacturing, and practical tests in the demonstration centre allowed the team to validate the machining results. Voith then conducted the first tests on-site, followed by longer-term tests for series production. Further customer requirements were implemented, and the tool was jointly perfected and finalised.
“The Kennametal tool delivered outstanding quality and performance from the first use, achieving a 50% reduction in machining time while still meeting accuracy and surface finish requirements. Additionally, the reduced weight limits the load on the magazine, tool changer and spindle—effectively reducing maintenance costs,” said Oberländer. “Our collaboration with Kennametal clearly shows the enormous innovation potential of additive manufacturing when applied in such a cooperative partnership.”
Kennametal Additive Manufacturing (AM) offers a game-changing solution by utilising high-performance materials and parts that are produced faster and with the design flexibility of 3D printing.
Kennametal brings nearly a century of materials and manufacturing expertise to every layer of the AM process—from raw material to finished part. This helps customers unlock the full value of 3D pr