MTD Audiobook
Situated near Alva in Central Scotland, Qualtek Engineering serves everything from small customers to large international corporations with CNC machining services. Alongside its main manufacturing activities, Qualtek operates Bespoke Engineering, a specialist automotive division concentrating on restoration, classic cars, performance vehicles, and motorcycles. It is here that Microloc clamping technology is used. The nature of Qualtek’s work demands versatility that traditional workholding solutions struggle to provide. Ewan Montgomery, who oversees operations, explains: “It’s a very...
info_outlineMTD Audiobook
As an automotive supplier manufacturing up to 20,000 parts per day, the Hirschvogel Group operates at the pinnacle of automated series production where optimised cycle times are essential. By using Vericut simulation and optimisation software, machining processes can be analysed and optimised for series production in advance. From Village Forge to Global Manufacturing Leader Founded in 1938 as a village blacksmith in Denklingen, the Hirschvogel Group has grown into a global leader in producing and refining highly formed steel and aluminium components for the automotive sector. With around...
info_outlineMTD Audiobook
Machined Component Systems (MCS) PLC stands as a centre of manufacturing excellence in the heart of the Midlands, operating from its facility in Redditch. This innovative and progressive subcontract-machining specialist has built a reputation for delivering precision-engineered machined components to diverse industry sectors, including automotive, petrochemical, environmental, transport technologies, marine, healthcare technologies, and white goods. Founded by Warren Gray’s father, MCS has been under Warren’s leadership for the past decade. During that time, the company has transformed...
info_outlineMTD Audiobook
Established in 1967 by Reginald Newnham and now under third-generation family leadership, Newnham Engineering Limited has undergone a remarkable transformation from traditional machining to cutting-edge 5-axis manufacturing. Through investments in DMG MORI machine tools, this West Sussex-based company has acquired a DMU 75 monoBLOCK, DMU 100 FD duoBLOCK, and a CMX 70 U. Operating from their modern facility on Lancing Business Park, Newnham serves demanding sectors including oil and gas, surveillance, F1, and specialised industrial applications. What distinguishes them in today’s competitive...
info_outlineMTD Audiobook
A process for complete machining of stator housings for electric motors, developed by Chemnitz machinery manufacturer NILES-SIMMONS and tool manufacturer MAPAL, has reached series production. Suppliers and OEMs now use it to produce components for drives in battery-powered electric vehicles and hybrid models. Both manufacturers recently proved in a development project that highly cost-efficient and precise production of stator housings is possible on a pick-up lathe. The parts feature external ribs for cooling circuits and are installed in the larger motor housing. Whilst NILES-SIMMONS used a...
info_outlineMTD Audiobook
Servicing manufacturers in the medical, oil and gas, aerospace, automotive, MOD, and F1 sectors, Rushden-based R&G Precision Engineering Ltd prides itself on the level of service it delivers to its customers. To meet its clients’ tight deadlines and quality demands, the company founded 50 years ago has invested in a series of multi-pallet machining centres from Matsuura. However, the shop floor at R&G Precision looked different four years ago from how it is today. Enzo Chiarelli from R&G Precision Engineering Ltd says: “We recall looking back to our first multi-pallet lights...
info_outlineMTD Audiobook
According to Pralhad Thapa, Department Manager at Mitutoyo Europe, an expert in dimensional metrology and automation: “We are confident we can address these issues for our customers, providing unattended measurement solutions that are easy to operate and available at a reasonable price.” In a presentation, it was this opening gambit that embodies both the philosophy of the new SmartMeasure AL system and Mitutoyo’s commitment to precision. Building upon decades of expertise in CMMs, this turnkey solution addresses the fundamental pain points expressed by customers across diverse...
info_outlineMTD Audiobook
At the core of lightweight, high-speed and energy-efficient electric and hybrid vehicles, composite materials play a crucial role in manufacturing advanced components. However, working with composites demands more than just selecting the right materials; it requires a new generation of precision tooling. The Composites Challenge Composites such as carbon fiber-reinforced polymers (CFRPs) and glass fiber composites (GFRPs) are not easy to work with. Their multi-layered structure, fiber orientation and abrasive nature make them resistant to traditional machining techniques. Unlike metals like...
info_outlineMTD Audiobook
According to the International Energy Agency’s (IEA) World Outlook, the clean energy transition and the rise of electric vehicles (EVs) could lead global demand for fossil fuels to peak before 2030. As nations worldwide shift away from fossil-fuelled engines and towards an electric future, automakers are making a shift of their own, starting with their machine setups. Here, Swetapadma Mohanty, Senior Development Engineer, Gear Machining at Sandvik Coromant, explores the machining methods that will prove key to the automotive industry’s electric future. Another prediction made by the IEA is...
info_outlineMTD Audiobook
2025 is already proving to be a memorable, standout year for leading precision motorsport subcontract specialist, Northants Precision Ltd. In addition to acquiring two more DN Solutions’ Lynx 2100 lathes from Mills CNC, the company has successfully completed its relocation to larger premises, increased its headcount, and secured new machining contracts. Led by owner and Managing Director Daniel Green, Northants Precision continually aims for excellence. The machines, an 8” chuck, long-bed Lynx 2100LMB with driven tooling, and a 6” chuck, 2-axis Lynx 2100A, were installed at the...
info_outlineAccording to the International Energy Agency’s (IEA) World Outlook, the clean energy transition and the rise of electric vehicles (EVs) could lead global demand for fossil fuels to peak before 2030. As nations worldwide shift away from fossil-fuelled engines and towards an electric future, automakers are making a shift of their own, starting with their machine setups. Here, Swetapadma Mohanty, Senior Development Engineer, Gear Machining at Sandvik Coromant, explores the machining methods that will prove key to the automotive industry’s electric future.
Another prediction made by the IEA is that, by 2030, the global electric car stock will expand to almost 350 million vehicles. That’s more than 60% of vehicles sold. To accommodate the rise in EVs, automakers are turning to alternative machining methods. One such method is power skiving.
Common gear machining challenges
Before diving into power skiving and its machining considerations, let’s think about the common challenges associated with gear machining. The machining of gears for internal combustion engine (ICE) vehicles and EVs can differ in certain aspects due to the distinct characteristics and requirements of these two types of vehicles. For instance, while ICE vehicles often have complex multi-speed transmissions to optimise power delivery, EVs typically have a single-speed or limited number of fixed gear ratios. Other distinguishing features include torque characteristics, noise and vibration considerations and weight and size constraints.
Machining gears, for any vehicle type, presents several machining challenges. To ensure proper meshing and transmission accuracy, gears require tight tolerances with high machining precision. Gears must also be designed to minimise noise and vibrations during operation in order to maintain batch consistency and ensure tool maintenance is key to achieving high production volumes.
Popular gear machining methods include hobbing, milling, shaping and broaching. However, these methods often have limitations such as lower flexibility in handling various gear types, longer cycle times and challenges with specific gear geometries. Hobbing is particularly popular for cutting spur and helical gears and is most suited to smaller production runs and for producing gears with various tooth profiles. For mass production, gear shaping is a preferred method as it can achieve high dimensional accuracy in shorter cycle times.
But these machining methods are incredibly specialist. Broaching and hobbing, for instance, must be carried out on a specialist machine, with a totally different machine required for shaping. Then there are all the other steps required for successful gear production — milling, turning, finishing, quality inspection and so on. What does that mean for manufacturers? Multiple machines set ups, limited flexibility, lengthened lead times and a costly machining process can all be consequences of a gear machining process that’s not catered to our increasingly electrified world.
Enter power skiving.
If we’re to get 350 million EVs on our roads by 2030, automakers must turn to machining methods that can accommodate. This is where power skiving comes into play. As a continuous process that uses a specialised cutting tool to remove material from a gear blank, power skiving boasts several benefits over traditional methods like hobbing and shaping.
First, power skiving typically provides higher precision and tighter tolerances compared to traditional process. It’s well-suited for producing gears with complex profiles, including helical gears and non-standard shapes. Traditional process may have limitations in achieving intricate tooth forms, especially when dealing with high helix angles or specific gear geometries.
Generally, power skiving is faster than traditional gear machining processes and, as it removes only the necessary material to form the gear teeth, the waste produced is minimal. A core driver for its use in EV production is power skiving’s flexibility — it’s suitable for various gear applications, including those with specific performance requirements. Manufacturers can therefore adapt to different gear types more easily than they can with traditional machining methods. With reduced set ups in multitask machines with power skiving, higher quality can be reached.
Crucially, power skiving is performed on a multitask machine. Performing multiple activities on a single machine will reduce set up times, improve accuracy, increase throughput and streamline programming. For those currently using multiple machines to execute traditional gear machining methods, however, upgrading to a multitask machine for power skiving requires some investment. It will be up to manufacturers to weigh up the pros and cons of their machining set-up, but there’s one thing we cannot deny — the pace of electrification isn’t going to slow down. To compete in an evolving, competitive market, flexibility, adaptability and process efficiency will be fundamental.
Tool selection
If power skiving is the right machining method for automotive’s future — what are the right tool choices? Let’s start with the gear milling tools themselves. Tools should have tight tolerances to ensure accurate machining and to produce gears with uniform quality. A good gear milling tool should also be heat-resistant to maintain its cutting performance and prevent premature wear, with a design that facilitates proper chip evacuation to ensure smooth cutting operations.
The CoroMill®178 and CoroMill®180 family of gear milling tools meets those expectations. For internal and external gears, capable of machining both cylindrical spur and helical gears from roughing to finishing, CoroMill® 178 is a key part of a successful power skiving setup. It is best used in applications where high-volume, high-rpm machining with long tool life is required, while CoroMill® 180 is ideal for general use on shoulders or small diameters. These tools offer the highest tool accuracy, regarding run-out and pitch, compared with indexable tools, providing a superior finishing profile of the gear and spline.
In one customer success case, by replacing a traditional process with power skiving using CoroMill® 178, cutting time was reduced and tool life increased significantly. With annual growth in production, the customer was able to save over 100 hours of machining time each year.
It’s not just about cutting tools with Sandvik Coromant. Customers receive tooling and application support, along with a service offering that includes technical feasibility consultancy. For example, our ESCO software is another vital component of our power skiving portfolio, enabling high-quality and precise production of power skiving tools.
InvoMilling® is a vital part of Sandvik Coromant’s gear machining portfolio. As part of the CoroPlus® Tool Path software, InvoMilling® is a process used for machining external gears, splines, and straight bevel gears with exceptional flexibility. This makes it highly suitable for small batch production and situations where short lead times are essential. The solution takes advantage of multitasking machines and machining centres’ capability to produce various gear profiles using the same set of tools.
As the world prepares for an electrified future, automakers must consider their manufacturing techniques. While traditional gear machining methods have long served the industry, thriving in a changing and increasingly competitive environment requires flexibility. Power skiving provides that flexible, adaptable approach — all while delivering finished components of the highest quality. As market leader, Sandvik Coromant is also focusing on high-level sustainable Power skiving tools and reducing CO2 footprints.