loader from loading.io

Innovating for aerospace manufacturing

MTD Audiobook

Release Date: 07/17/2025

Microloc transforms Scottish engineering operations show art Microloc transforms Scottish engineering operations

MTD Audiobook

Situated near Alva in Central Scotland, Qualtek Engineering serves everything from small customers to large international corporations with CNC machining services. Alongside its main manufacturing activities, Qualtek operates Bespoke Engineering, a specialist automotive division concentrating on restoration, classic cars, performance vehicles, and motorcycles. It is here that Microloc clamping technology is used. The nature of Qualtek’s work demands versatility that traditional workholding solutions struggle to provide. Ewan Montgomery, who oversees operations, explains: “It’s a very...

info_outline
Hirschvogel revs-up optimisation with Vericut show art Hirschvogel revs-up optimisation with Vericut

MTD Audiobook

As an automotive supplier manufacturing up to 20,000 parts per day, the Hirschvogel Group operates at the pinnacle of automated series production where optimised cycle times are essential. By using Vericut simulation and optimisation software, machining processes can be analysed and optimised for series production in advance. From Village Forge to Global Manufacturing Leader Founded in 1938 as a village blacksmith in Denklingen, the Hirschvogel Group has grown into a global leader in producing and refining highly formed steel and aluminium components for the automotive sector. With around...

info_outline
Transforming production capabilities with Hanwha show art Transforming production capabilities with Hanwha

MTD Audiobook

Machined Component Systems (MCS) PLC stands as a centre of manufacturing excellence in the heart of the Midlands, operating from its facility in Redditch. This innovative and progressive subcontract-machining specialist has built a reputation for delivering precision-engineered machined components to diverse industry sectors, including automotive, petrochemical, environmental, transport technologies, marine, healthcare technologies, and white goods. Founded by Warren Gray’s father, MCS has been under Warren’s leadership for the past decade. During that time, the company has transformed...

info_outline
Taking tradition to high-tech precision show art Taking tradition to high-tech precision

MTD Audiobook

Established in 1967 by Reginald Newnham and now under third-generation family leadership, Newnham Engineering Limited has undergone a remarkable transformation from traditional machining to cutting-edge 5-axis manufacturing. Through investments in DMG MORI machine tools, this West Sussex-based company has acquired a DMU 75 monoBLOCK, DMU 100 FD duoBLOCK, and a CMX 70 U. Operating from their modern facility on Lancing Business Park, Newnham serves demanding sectors including oil and gas, surveillance, F1, and specialised industrial applications. What distinguishes them in today’s competitive...

info_outline
Stator machining solution ready for series production show art Stator machining solution ready for series production

MTD Audiobook

A process for complete machining of stator housings for electric motors, developed by Chemnitz machinery manufacturer NILES-SIMMONS and tool manufacturer MAPAL, has reached series production. Suppliers and OEMs now use it to produce components for drives in battery-powered electric vehicles and hybrid models. Both manufacturers recently proved in a development project that highly cost-efficient and precise production of stator housings is possible on a pick-up lathe. The parts feature external ribs for cooling circuits and are installed in the larger motor housing. Whilst NILES-SIMMONS used a...

info_outline
Serving success on a pallet show art Serving success on a pallet

MTD Audiobook

Servicing manufacturers in the medical, oil and gas, aerospace, automotive, MOD, and F1 sectors, Rushden-based R&G Precision Engineering Ltd prides itself on the level of service it delivers to its customers. To meet its clients’ tight deadlines and quality demands, the company founded 50 years ago has invested in a series of multi-pallet machining centres from Matsuura. However, the shop floor at R&G Precision looked different four years ago from how it is today. Enzo Chiarelli from R&G Precision Engineering Ltd says: “We recall looking back to our first multi-pallet lights...

info_outline
Revolutionising factory automation with intelligent measurement solutions show art Revolutionising factory automation with intelligent measurement solutions

MTD Audiobook

According to Pralhad Thapa, Department Manager at Mitutoyo Europe, an expert in dimensional metrology and automation: “We are confident we can address these issues for our customers, providing unattended measurement solutions that are easy to operate and available at a reasonable price.” In a presentation, it was this opening gambit that embodies both the philosophy of the new SmartMeasure AL system and Mitutoyo’s commitment to precision. Building upon decades of expertise in CMMs, this turnkey solution addresses the fundamental pain points expressed by customers across diverse...

info_outline
Precision tools driving EV and hybrid composites manufacturing show art Precision tools driving EV and hybrid composites manufacturing

MTD Audiobook

At the core of lightweight, high-speed and energy-efficient electric and hybrid vehicles, composite materials play a crucial role in manufacturing advanced components. However, working with composites demands more than just selecting the right materials; it requires a new generation of precision tooling. The Composites Challenge Composites such as carbon fiber-reinforced polymers (CFRPs) and glass fiber composites (GFRPs) are not easy to work with. Their multi-layered structure, fiber orientation and abrasive nature make them resistant to traditional machining techniques. Unlike metals like...

info_outline
Power skiving for automotive’s future show art Power skiving for automotive’s future

MTD Audiobook

According to the International Energy Agency’s (IEA) World Outlook, the clean energy transition and the rise of electric vehicles (EVs) could lead global demand for fossil fuels to peak before 2030. As nations worldwide shift away from fossil-fuelled engines and towards an electric future, automakers are making a shift of their own, starting with their machine setups. Here, Swetapadma Mohanty, Senior Development Engineer, Gear Machining at Sandvik Coromant, explores the machining methods that will prove key to the automotive industry’s electric future. Another prediction made by the IEA is...

info_outline
Motorsport subby takes pole position show art Motorsport subby takes pole position

MTD Audiobook

2025 is already proving to be a memorable, standout year for leading precision motorsport subcontract specialist, Northants Precision Ltd. In addition to acquiring two more DN Solutions’ Lynx 2100 lathes from Mills CNC, the company has successfully completed its relocation to larger premises, increased its headcount, and secured new machining contracts. Led by owner and Managing Director Daniel Green, Northants Precision continually aims for excellence. The machines, an 8” chuck, long-bed Lynx 2100LMB with driven tooling, and a 6” chuck, 2-axis Lynx 2100A, were installed at the...

info_outline
 
More Episodes

 The aerospace industry stands at the intersection of extreme technological demands and cost-efficiency requirements. With aircraft manufacturers like Airbus and Boeing projecting the production of 42,500 new jets over the next 20 years, the need for precision machine tools and cutting tools has never been more critical.
Aircraft construction is an intricate process that involves a complex array of materials, each presenting unique machining challenges. Aluminium alloys dominate the industry, comprising approximately 60% of aircraft components, while titanium and advanced composites play critical roles in structural and performance-critical areas.
Aluminium alloys, particularly from the 2xxx, 6xxx, and 7xxx series, offer an ideal combination of lightweight properties and structural integrity. These materials require sophisticated machining approaches that balance material removal, surface quality, and dimensional precision. High-speed cutting (HSC) technologies have emerged as a vital solution, enabling manufacturers to address the demanding requirements of aerospace component production. It is in this area that Walter is innovating with its cutting tool solutions.
Aircraft construction involves a complex array of materials, each presenting unique machining challenges. As aluminium alloys comprise approximately 60% of aircraft components and require sophisticated machining approaches, Walter’s high-speed cutting (HSC) tools, such as the M2131 and M2331 milling cutters address the specific challenges the industry faces with these materials. The two insert sizes allow for depths of cut of 15 to 20mm, achieving chip removal rates of up to 11 litres per minute.
Both milling cutters work almost seamlessly when repositioned, resulting in smooth surfaces even during pre-finishing. The dense, smooth PVD coating of the cutting edges makes them extremely stable and also ensures that there is hardly any cutting edge build-up. The creative design of the insert seat secures the insert against the high centrifugal forces that occur during high-speed cutting. At the same time, internal cooling channels deliver the coolant directly to the cutting edge to extend tool life and ensure exceptional chip evacuation.
Titanium Alloys: Conquering Difficult Machining
While aluminium alloys are used for fuselages and wings, titanium alloys, such as TiAl6V4 or Ti5553, are employed where an exceptionally high degree of rigidity is required, such as in landing gear components, struts, or flap tracks. The hardness and low thermal conductivity of titanium necessitate high requirements for the cutting tools, particularly regarding process reliability. Rapid cutting edge wear and low cutting parameters make machining titanium parts very time-consuming.
Companies that succeed in reducing the machining time per component maintain a clear competitive advantage. Here, the Walter BLAXX M3255 helical milling cutter provides breakthrough solutions. The innovative geometry of both the milling body and the indexable inserts ensures that the maximum number of teeth can engage with the material, while the soft-cutting insert geometry results in positive cutting behaviour that consequently reduces machining times and offers higher metal removal rates.
Heat management poses challenges when machining titanium alloys due to their low thermal conductivity; therefore, an optimised coolant supply to the cutting edge is essential. The Walter BLAXX M3255 is designed to create excellent chip clearance space that guarantees reliable chip removal, even at high cutting rates. The tangential positioning of the two or four cutting-edged indexable inserts allows for maximum cutting power and enables the machining of forged components, where the peripheral zone of the forged skin presents extreme challenges for the tool’s edge. Ideal for rough machining applications, the Walter BLAXX M3255 helical milling cutter reduces titanium machining time by approximately 22% and extends tool life by around 100% through its innovative insert geometry and optimised chip clearance, which maximises material engagement and removal.
Superalloys: Ceramic Cutting Technology
Correlating with the well-filled order books is the requirement placed upon engine manufacturers and the supply chain for machining heat-resistant superalloys (HRSA). Here, too, shorter machining times are highly desirable. The cutting speed of carbide milling cutters on HRSA materials is typically around 50m/min. However, ceramic cutting tools push the boundaries with cutting speeds of up to 1000m/min, a 20 times improvement.
The SiAlON ceramics offer excellent possibilities for this, as they are less sensitive to temperature fluctuations than whisker-reinforced ceramics, making them the first choice for milling operations in HRSA. The interrupted cutting during milling causes the temperature at one cutting edge to vary, and the use of coolant can further increase the temperature difference. In the worst-case scenario, the so-called ‘thermal shock effect’ occurs, leading to cracks and even fractures. Dry machining is therefore recommended when machining superalloys with ceramic milling cutters. A positive side effect is that the ecological footprint of the milling operation is improved because lubricants are not required.
Blisks are classic components made of nickel-based alloys. These bladed disks are often rough machined using carbide milling cutters. However, the machining time for this can easily exceed 30 minutes with conventional milling cutters. A ceramic milling cutter with a high feed geometry can machine the same features in just ten minutes. Feed rates of up to 9500mm/min can be achieved in a heat-resistant nickel-based alloy with a hardness of 44HRc and a tensile strength of 1400N/mm²; such machining values would be expected in aluminium, not HRSA.
For HRSA machining, Walter introduces revolutionary ceramic milling solutions such as its MC075 high-feed geometry end mills. Available in a range of options including screw-in ConeFit interfaces, the MC075 ceramic end mills can deliver cutting speeds of up to 1000m/min utilising advanced SiAlON ceramic technology for superior temperature resistance.
Future-Forward Strategies: Near-Net-Shape
Unlike the automotive industry, where mass production dominates, the quantities required in the aerospace industry are comparably small, with the largest manufacturers like Airbus only producing around 750 aircraft a year.
This makes ‘tool-free’ production of components using 3D printing a feasible alternative, especially as the process enables the production of complex and stable components. Furthermore, it reduces the weight of conventionally manufactured components by up to 55%. This subsequently reduces the consumption of raw materials by up to 90%. From a machining perspective, there are also developments in this area that significantly optimise component production in terms of technology and costs.
Fuselage sections, wings, tail units, engine components, and other complex assemblies are now being forged or 3D printed as close as possible to their ‘Near Net Shape’. It means significantly less material has to be removed. This not only saves material and machining time but also reduces waste - and thus enables more efficient manufacturing.

Technological Integration
The question of whether machine tools will still be needed in the future could well be asked in view of developments such as 3D printing or contour-based manufacturing. The answer is a resounding yes! Almost all 3D-printed workpieces require subsequent machining because their surface quality is usually insufficient for the components to be fitted directly. This is caused in no small part by the so-called ‘staircase effect’ that occurs in the powder bed process typical of 3D printing. Heat treatment of steel components can also result in hardening distortion, which must be eliminated. Furthermore, support structures must be cleanly removed. All of these factors make cutting tools indispensable – now and in the future.

The Economic Impact of Walter Solutions
As an industry leader, Walter has proven the merits of its technical advances in the aerospace sector throughout the manufacturing supply chain. For the production of aluminium structural components, a major aerospace manufacturer implemented Walter’s M2131 milling system for producing aluminium wing ribs. The result was a material removal rate (MMR) increase from 5.8 to 11 litres per minute with a 46% decrease in total machining time. Furthermore, the groundbreaking tool geometries of the M2131 system improved tool life by 35%, resulting in a 28% reduction in cost per component.
Similar improvements have been witnessed when machining titanium Ti5553 landing gear components. By adopting the high-feed Walter BLAXX M3255 system, end users have benefitted from cycle time reductions beyond 22% when rough machining. Tool life improvements that are double the performance compared to the previous solution have subsequently yielded an overall 31% reduction in tooling cost per component.
The machining of superalloy engine components is a particularly challenging niche where Walter once again excels. When machining blisk components from Inconel 718 (44HRc), the Walter MC075 ceramic milling system has delivered a machining time reduction from 30 minutes to 10 minutes per blade pocket, tripling throughput with existing machine tools and achieving machining cost savings of 65% despite a higher tool investment.
As the aerospace industry commits to CO2-neutral operations by 2050, Walter’s tooling solutions support this narrative of sustainability and efficiency, contributing significantly with innovations that reduce energy consumption, minimise coolant and lubricant usage, enable more efficient manufacturing processes and support lightweight component design.

Conclusion
Walter demonstrates that advanced tooling is not just about cutting metal—it’s about enabling the future of aerospace technology. By combining innovative materials expertise, cutting-edge tool design, and a commitment to efficiency, Walter is helping aircraft manufacturers push the boundaries of what’s possible.
Walter continues to innovate in response to evolving aerospace requirements with digital integration tools such as its tool management systems that increasingly incorporate digital capabilities. This now reaches far beyond the cutting tool to incorporate comprehensive digital twins of tooling systems for unparalleled tool data management, AI-assisted cutting parameter recommendations, and predictive maintenance tools for monitoring and forecasting tool wear for optimal utilisation rates.
Readers can and download a free copy of the complete aerospace whitepaper: ‘A balancing act between high technology and cost efficiency’ here: https://pages.walter-tools.com/en-download-whitepaper.html